- added `uninlined_format_args` to `[workspace.lints.clippy]` in the
`Cargo.toml` for the workspace
- ran `cargo clippy --tests --fix`
- ran `just fmt`
## Summary
These tests were getting a bit unwieldy, and they're starting to become
load-bearing. Let's clean them up, and get them working solidly so we
can easily expand this harness with new tests.
## Test Plan
- [x] Tests continue to pass
this dramatically improves time to run `cargo test -p codex-core` (~25x
speedup).
before:
```
cargo test -p codex-core 35.96s user 68.63s system 19% cpu 8:49.80 total
```
after:
```
cargo test -p codex-core 5.51s user 8.16s system 63% cpu 21.407 total
```
both tests measured "hot", i.e. on a 2nd run with no filesystem changes,
to exclude compile times.
approach inspired by [Delete Cargo Integration
Tests](https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html),
we move all test cases in tests/ into a single suite in order to have a
single binary, as there is significant overhead for each test binary
executed, and because test execution is only parallelized with a single
binary.
## Summary
GPT-5 introduced the concept of [custom
tools](https://platform.openai.com/docs/guides/function-calling#custom-tools),
which allow the model to send a raw string result back, simplifying
json-escape issues. We are migrating gpt-5 to use this by default.
However, gpt-oss models do not support custom tools, only normal
functions. So we keep both tool definitions, and provide whichever one
the model family supports.
## Testing
- [x] Tested locally with various models
- [x] Unit tests pass
## Summary
We've been seeing a number of issues and reports with our synthetic
`apply_patch` tool, e.g. #802. Let's make this a real tool - in my
anecdotal testing, it's critical for GPT-OSS models, but I'd like to
make it the standard across GPT-5 and codex models as well.
## Testing
- [x] Tested locally
- [x] Integration test
This PR:
* Added the clippy.toml to configure allowable expect / unwrap usage in
tests
* Removed as many expect/allow lines as possible from tests
* moved a bunch of allows to expects where possible
Note: in integration tests, non `#[test]` helper functions are not
covered by this so we had to leave a few lingering `expect(expect_used`
checks around
When using codex-tui on a linux system I was unable to run `cargo
clippy` inside of codex due to:
```
[pid 3548377] socketpair(AF_UNIX, SOCK_SEQPACKET|SOCK_CLOEXEC, 0, <unfinished ...>
[pid 3548370] close(8 <unfinished ...>
[pid 3548377] <... socketpair resumed>0x7ffb97f4ed60) = -1 EPERM (Operation not permitted)
```
And
```
3611300 <... recvfrom resumed>0x708b8b5cffe0, 8, 0, NULL, NULL) = -1 EPERM (Operation not permitted)
```
This PR:
* Fixes a bug that disallowed AF_UNIX to allow it on `socket()`
* Adds recvfrom() to the syscall allow list, this should be fine since
we disable opening new sockets. But we should validate there is not a
open socket inheritance issue.
* Allow socketpair to be called for AF_UNIX
* Adds tests for AF_UNIX components
* All of which allows running `cargo clippy` within the sandbox on
linux, and possibly other tooling using a fork server model + AF_UNIX
comms.
The high-order bit on this PR is that it makes it so `sandbox.rs` tests
both Mac and Linux, as we introduce a general
`spawn_command_under_sandbox()` function with platform-specific
implementations for testing.
An important, and interesting, discovery in porting the test to Linux is
that (for reasons cited in the code comments), `/dev/shm` has to be
added to `writable_roots` on Linux in order for `multiprocessing.Lock`
to work there. Granting write access to `/dev/shm` comes with some
degree of risk, so we do not make this the default for Codex CLI.
Piggybacking on top of #2317, this moves the
`python_multiprocessing_lock_works` test yet again, moving
`codex-rs/core/tests/sandbox.rs` to `codex-rs/exec/tests/sandbox.rs`
because in `codex-rs/exec/tests` we can use `cargo_bin()` like so:
```
let codex_linux_sandbox_exe = assert_cmd::cargo::cargo_bin("codex-exec");
```
which is necessary so we can use `codex_linux_sandbox_exe` and therefore
`spawn_command_under_linux_sandbox` in an integration test.
This also moves `spawn_command_under_linux_sandbox()` out of `exec.rs`
and into `landlock.rs`, which makes things more consistent with
`seatbelt.rs` in `codex-core`.
For reference, https://github.com/openai/codex/pull/1808 is the PR that
made the change to Seatbelt to get this test to pass on Mac.
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
This introduces some special behavior to the CLIs that are using the
`codex-arg0` crate where if `arg1` is `--codex-run-as-apply-patch`, then
it will run as if `apply_patch arg2` were invoked. This is important
because it means we can do things like:
```
SANDBOX_TYPE=landlock # or seatbelt for macOS
codex debug "${SANDBOX_TYPE}" -- codex --codex-run-as-apply-patch PATCH
```
which gives us a way to run `apply_patch` while ensuring it adheres to
the sandbox the user specified.
While it would be nice to use the `arg0` trick like we are currently
doing for `codex-linux-sandbox`, there is no way to specify the `arg0`
for the underlying command when running under `/usr/bin/sandbox-exec`,
so it will not work for us in this case.
Admittedly, we could have also supported this via a custom environment
variable (e.g., `CODEX_ARG0`), but since environment variables are
inherited by child processes, that seemed like a potentially leakier
abstraction.
This change, as well as our existing reliance on checking `arg0`, place
additional requirements on those who include `codex-core`. Its
`README.md` has been updated to reflect this.
While we could have just added an `apply-patch` subcommand to the
`codex` multitool CLI, that would not be sufficient for the standalone
`codex-exec` CLI, which is something that we distribute as part of our
GitHub releases for those who know they will not be using the TUI and
therefore prefer to use a slightly smaller executable:
https://github.com/openai/codex/releases/tag/rust-v0.10.0
To that end, this PR adds an integration test to ensure that the
`--codex-run-as-apply-patch` option works with the standalone
`codex-exec` CLI.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/1702).
* #1705
* #1703
* __->__ #1702
* #1698
* #1697