feat: experimental env var: CODEX_SANDBOX_NETWORK_DISABLED (#879)

When using Codex to develop Codex itself, I noticed that sometimes it
would try to add `#[ignore]` to the following tests:

```
keeps_previous_response_id_between_tasks()
retries_on_early_close()
```

Both of these tests start a `MockServer` that launches an HTTP server on
an ephemeral port and requires network access to hit it, which the
Seatbelt policy associated with `--full-auto` correctly denies. If I
wasn't paying attention to the code that Codex was generating, one of
these `#[ignore]` annotations could have slipped into the codebase,
effectively disabling the test for everyone.

To that end, this PR enables an experimental environment variable named
`CODEX_SANDBOX_NETWORK_DISABLED` that is set to `1` if the
`SandboxPolicy` used to spawn the process does not have full network
access. I say it is "experimental" because I'm not convinced this API is
quite right, but we need to start somewhere. (It might be more
appropriate to have an env var like `CODEX_SANDBOX=full-auto`, but the
challenge is that our newer `SandboxPolicy` abstraction does not map to
a simple set of enums like in the TypeScript CLI.)

We leverage this new functionality by adding the following code to the
aforementioned tests as a way to "dynamically disable" them:

```rust
if std::env::var(CODEX_SANDBOX_NETWORK_DISABLED_ENV_VAR).is_ok() {
    println!(
        "Skipping test because it cannot execute when network is disabled in a Codex sandbox."
    );
    return;
}
```

We can use the `debug seatbelt --full-auto` command to verify that
`cargo test` fails when run under Seatbelt prior to this change:

```
$ cargo run --bin codex -- debug seatbelt --full-auto -- cargo test
---- keeps_previous_response_id_between_tasks stdout ----

thread 'keeps_previous_response_id_between_tasks' panicked at /Users/mbolin/.cargo/registry/src/index.crates.io-1949cf8c6b5b557f/wiremock-0.6.3/src/mock_server/builder.rs:107:46:
Failed to bind an OS port for a mock server.: Os { code: 1, kind: PermissionDenied, message: "Operation not permitted" }
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace


failures:
    keeps_previous_response_id_between_tasks

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

error: test failed, to rerun pass `-p codex-core --test previous_response_id`
```

Though after this change, the above command succeeds! This means that,
going forward, when Codex operates on Codex itself, when it runs `cargo
test`, only "real failures" should cause the command to fail.

As part of this change, I decided to tighten up the codepaths for
running `exec()` for shell tool calls. In particular, we do it in `core`
for the main Codex business logic itself, but we also expose this logic
via `debug` subcommands in the CLI in the `cli` crate. The logic for the
`debug` subcommands was not quite as faithful to the true business logic
as I liked, so I:

* refactored a bit of the Linux code, splitting `linux.rs` into
`linux_exec.rs` and `landlock.rs` in the `core` crate.
* gating less code behind `#[cfg(target_os = "linux")]` because such
code does not get built by default when I develop on Mac, which means I
either have to build the code in Docker or wait for CI signal
* introduced `macro_rules! configure_command` in `exec.rs` so we can
have both sync and async versions of this code. The synchronous version
seems more appropriate for straight threads or potentially fork/exec.
This commit is contained in:
Michael Bolin
2025-05-09 18:29:34 -07:00
committed by GitHub
parent 7795272282
commit fde48aaa0d
12 changed files with 275 additions and 128 deletions

View File

@@ -1,6 +1,7 @@
use std::io;
#[cfg(target_family = "unix")]
#[cfg(unix)]
use std::os::unix::process::ExitStatusExt;
use std::io;
use std::path::Path;
use std::path::PathBuf;
use std::process::ExitStatus;
@@ -19,6 +20,7 @@ use tokio::sync::Notify;
use crate::error::CodexErr;
use crate::error::Result;
use crate::error::SandboxErr;
use crate::exec_linux::exec_linux;
use crate::protocol::SandboxPolicy;
// Maximum we send for each stream, which is either:
@@ -42,6 +44,16 @@ const MACOS_SEATBELT_BASE_POLICY: &str = include_str!("seatbelt_base_policy.sbpl
/// already has root access.
const MACOS_PATH_TO_SEATBELT_EXECUTABLE: &str = "/usr/bin/sandbox-exec";
/// Experimental environment variable that will be set to some non-empty value
/// if both of the following are true:
///
/// 1. The process was spawned by Codex as part of a shell tool call.
/// 2. SandboxPolicy.has_full_network_access() was false for the tool call.
///
/// We may try to have just one environment variable for all sandboxing
/// attributes, so this may change in the future.
pub const CODEX_SANDBOX_NETWORK_DISABLED_ENV_VAR: &str = "CODEX_SANDBOX_NETWORK_DISABLED";
#[derive(Debug, Clone)]
pub struct ExecParams {
pub command: Vec<String>,
@@ -60,27 +72,6 @@ pub enum SandboxType {
LinuxSeccomp,
}
#[cfg(target_os = "linux")]
async fn exec_linux(
params: ExecParams,
ctrl_c: Arc<Notify>,
sandbox_policy: &SandboxPolicy,
) -> Result<RawExecToolCallOutput> {
crate::linux::exec_linux(params, ctrl_c, sandbox_policy).await
}
#[cfg(not(target_os = "linux"))]
async fn exec_linux(
_params: ExecParams,
_ctrl_c: Arc<Notify>,
_sandbox_policy: &SandboxPolicy,
) -> Result<RawExecToolCallOutput> {
Err(CodexErr::Io(io::Error::new(
io::ErrorKind::InvalidInput,
"linux sandbox is not supported on this platform",
)))
}
pub async fn process_exec_tool_call(
params: ExecParams,
sandbox_type: SandboxType,
@@ -90,25 +81,23 @@ pub async fn process_exec_tool_call(
let start = Instant::now();
let raw_output_result = match sandbox_type {
SandboxType::None => exec(params, ctrl_c).await,
SandboxType::None => exec(params, sandbox_policy, ctrl_c).await,
SandboxType::MacosSeatbelt => {
let ExecParams {
command,
cwd,
timeout_ms,
} = params;
let seatbelt_command = create_seatbelt_command(command, sandbox_policy, &cwd);
exec(
ExecParams {
command: seatbelt_command,
cwd,
timeout_ms,
},
ctrl_c,
let child = spawn_command_under_seatbelt(
command,
sandbox_policy,
cwd,
StdioPolicy::RedirectForShellTool,
)
.await
.await?;
consume_truncated_output(child, ctrl_c, timeout_ms).await
}
SandboxType::LinuxSeccomp => exec_linux(params, ctrl_c, sandbox_policy).await,
SandboxType::LinuxSeccomp => exec_linux(params, ctrl_c, sandbox_policy),
};
let duration = start.elapsed();
match raw_output_result {
@@ -151,7 +140,17 @@ pub async fn process_exec_tool_call(
}
}
pub fn create_seatbelt_command(
pub async fn spawn_command_under_seatbelt(
command: Vec<String>,
sandbox_policy: &SandboxPolicy,
cwd: PathBuf,
stdio_policy: StdioPolicy,
) -> std::io::Result<Child> {
let seatbelt_command = create_seatbelt_command(command, sandbox_policy, &cwd);
spawn_child_async(seatbelt_command, cwd, sandbox_policy, stdio_policy).await
}
fn create_seatbelt_command(
command: Vec<String>,
sandbox_policy: &SandboxPolicy,
cwd: &Path,
@@ -229,46 +228,118 @@ pub struct ExecToolCallOutput {
pub duration: Duration,
}
pub async fn exec(
async fn exec(
ExecParams {
command,
cwd,
timeout_ms,
}: ExecParams,
sandbox_policy: &SandboxPolicy,
ctrl_c: Arc<Notify>,
) -> Result<RawExecToolCallOutput> {
let child = spawn_child(command, cwd).await?;
let child = spawn_child_async(
command,
cwd,
sandbox_policy,
StdioPolicy::RedirectForShellTool,
)
.await?;
consume_truncated_output(child, ctrl_c, timeout_ms).await
}
/// Spawns the appropriate child process for the ExecParams.
async fn spawn_child(command: Vec<String>, cwd: PathBuf) -> std::io::Result<Child> {
if command.is_empty() {
return Err(std::io::Error::new(
io::ErrorKind::InvalidInput,
"command args are empty",
));
}
#[derive(Debug, Clone, Copy)]
pub enum StdioPolicy {
RedirectForShellTool,
Inherit,
}
let mut cmd = Command::new(&command[0]);
cmd.args(&command[1..]);
cmd.current_dir(cwd);
macro_rules! configure_command {
(
$cmd_type: path,
$command: expr,
$cwd: expr,
$sandbox_policy: expr,
$stdio_policy: expr
) => {{
// For now, we take `SandboxPolicy` as a parameter to spawn_child() because
// we need to determine whether to set the
// `CODEX_SANDBOX_NETWORK_DISABLED_ENV_VAR` environment variable.
// Ultimately, we should be stricter about the environment variables that
// are set for the command (as we are when spawning an MCP server), so
// instead of SandboxPolicy, we should take the exact env to use for the
// Command (i.e., `env_clear().envs(env)`).
if $command.is_empty() {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
"command args are empty",
));
}
// Do not create a file descriptor for stdin because otherwise some
// commands may hang forever waiting for input. For example, ripgrep has
// a heuristic where it may try to read from stdin as explained here:
// https://github.com/BurntSushi/ripgrep/blob/e2362d4d5185d02fa857bf381e7bd52e66fafc73/crates/core/flags/hiargs.rs#L1101-L1103
cmd.stdin(Stdio::null());
let mut cmd = <$cmd_type>::new(&$command[0]);
cmd.args(&$command[1..]);
cmd.current_dir($cwd);
cmd.stdout(Stdio::piped())
.stderr(Stdio::piped())
.kill_on_drop(true)
.spawn()
if !$sandbox_policy.has_full_network_access() {
cmd.env(CODEX_SANDBOX_NETWORK_DISABLED_ENV_VAR, "1");
}
match $stdio_policy {
StdioPolicy::RedirectForShellTool => {
// Do not create a file descriptor for stdin because otherwise some
// commands may hang forever waiting for input. For example, ripgrep has
// a heuristic where it may try to read from stdin as explained here:
// https://github.com/BurntSushi/ripgrep/blob/e2362d4d5185d02fa857bf381e7bd52e66fafc73/crates/core/flags/hiargs.rs#L1101-L1103
cmd.stdin(Stdio::null());
cmd.stdout(Stdio::piped()).stderr(Stdio::piped());
}
StdioPolicy::Inherit => {
// Inherit stdin, stdout, and stderr from the parent process.
cmd.stdin(Stdio::inherit())
.stdout(Stdio::inherit())
.stderr(Stdio::inherit());
}
}
std::io::Result::<$cmd_type>::Ok(cmd)
}};
}
/// Spawns the appropriate child process for the ExecParams and SandboxPolicy,
/// ensuring the args and environment variables used to create the `Command`
/// (and `Child`) honor the configuration.
pub(crate) async fn spawn_child_async(
command: Vec<String>,
cwd: PathBuf,
sandbox_policy: &SandboxPolicy,
stdio_policy: StdioPolicy,
) -> std::io::Result<Child> {
let mut cmd = configure_command!(Command, command, cwd, sandbox_policy, stdio_policy)?;
cmd.kill_on_drop(true).spawn()
}
/// Alternative verison of `spawn_child_async()` that returns
/// `std::process::Child` instead of `tokio::process::Child`. This is useful for
/// spawning a child process in a thread that is not running a Tokio runtime.
pub fn spawn_child_sync(
command: Vec<String>,
cwd: PathBuf,
sandbox_policy: &SandboxPolicy,
stdio_policy: StdioPolicy,
) -> std::io::Result<std::process::Child> {
let mut cmd = configure_command!(
std::process::Command,
command,
cwd,
sandbox_policy,
stdio_policy
)?;
cmd.spawn()
}
/// Consumes the output of a child process, truncating it so it is suitable for
/// use as the output of a `shell` tool call. Also enforces specified timeout.
async fn consume_truncated_output(
pub(crate) async fn consume_truncated_output(
mut child: Child,
ctrl_c: Arc<Notify>,
timeout_ms: Option<u64>,