feat: add mcp subcommand to CLI to run Codex as an MCP server (#934)

Previously, running Codex as an MCP server required a standalone binary
in our Cargo workspace, but this PR makes it available as a subcommand
(`mcp`) of the main CLI.

Ran this with:

```
RUST_LOG=debug npx @modelcontextprotocol/inspector cargo run --bin codex -- mcp
```

and verified it worked as expected in the inspector at
`http://127.0.0.1:6274/`.
This commit is contained in:
Michael Bolin
2025-05-14 13:15:41 -07:00
committed by GitHub
parent a12e4b0b31
commit 497c5396c0
7 changed files with 135 additions and 111 deletions

1
codex-rs/Cargo.lock generated
View File

@@ -491,6 +491,7 @@ dependencies = [
"codex-common",
"codex-core",
"codex-exec",
"codex-mcp-server",
"codex-tui",
"serde_json",
"tokio",

View File

@@ -24,6 +24,7 @@ clap = { version = "4", features = ["derive"] }
codex-core = { path = "../core" }
codex-common = { path = "../common", features = ["cli"] }
codex-exec = { path = "../exec" }
codex-mcp-server = { path = "../mcp-server" }
codex-tui = { path = "../tui" }
serde_json = "1"
tokio = { version = "1", features = [

View File

@@ -33,6 +33,9 @@ enum Subcommand {
#[clap(visible_alias = "e")]
Exec(ExecCli),
/// Experimental: run Codex as an MCP server.
Mcp,
/// Run the Protocol stream via stdin/stdout
#[clap(visible_alias = "p")]
Proto(ProtoCli),
@@ -70,6 +73,9 @@ async fn main() -> anyhow::Result<()> {
Some(Subcommand::Exec(exec_cli)) => {
codex_exec::run_main(exec_cli).await?;
}
Some(Subcommand::Mcp) => {
codex_mcp_server::run_main().await?;
}
Some(Subcommand::Proto(proto_cli)) => {
proto::run_main(proto_cli).await?;
}

View File

@@ -3,6 +3,14 @@ name = "codex-mcp-server"
version = { workspace = true }
edition = "2024"
[[bin]]
name = "codex-mcp-server"
path = "src/main.rs"
[lib]
name = "codex_mcp_server"
path = "src/lib.rs"
[lints]
workspace = true

View File

@@ -0,0 +1,113 @@
//! Prototype MCP server.
#![deny(clippy::print_stdout, clippy::print_stderr)]
use std::io::Result as IoResult;
use mcp_types::JSONRPCMessage;
use tokio::io::AsyncBufReadExt;
use tokio::io::AsyncWriteExt;
use tokio::io::BufReader;
use tokio::io::{self};
use tokio::sync::mpsc;
use tracing::debug;
use tracing::error;
use tracing::info;
mod codex_tool_config;
mod codex_tool_runner;
mod message_processor;
use crate::message_processor::MessageProcessor;
/// Size of the bounded channels used to communicate between tasks. The value
/// is a balance between throughput and memory usage 128 messages should be
/// plenty for an interactive CLI.
const CHANNEL_CAPACITY: usize = 128;
pub async fn run_main() -> IoResult<()> {
// Install a simple subscriber so `tracing` output is visible. Users can
// control the log level with `RUST_LOG`.
tracing_subscriber::fmt()
.with_writer(std::io::stderr)
.init();
// Set up channels.
let (incoming_tx, mut incoming_rx) = mpsc::channel::<JSONRPCMessage>(CHANNEL_CAPACITY);
let (outgoing_tx, mut outgoing_rx) = mpsc::channel::<JSONRPCMessage>(CHANNEL_CAPACITY);
// Task: read from stdin, push to `incoming_tx`.
let stdin_reader_handle = tokio::spawn({
let incoming_tx = incoming_tx.clone();
async move {
let stdin = io::stdin();
let reader = BufReader::new(stdin);
let mut lines = reader.lines();
while let Some(line) = lines.next_line().await.unwrap_or_default() {
match serde_json::from_str::<JSONRPCMessage>(&line) {
Ok(msg) => {
if incoming_tx.send(msg).await.is_err() {
// Receiver gone nothing left to do.
break;
}
}
Err(e) => error!("Failed to deserialize JSONRPCMessage: {e}"),
}
}
debug!("stdin reader finished (EOF)");
}
});
// Task: process incoming messages.
let processor_handle = tokio::spawn({
let mut processor = MessageProcessor::new(outgoing_tx.clone());
async move {
while let Some(msg) = incoming_rx.recv().await {
match msg {
JSONRPCMessage::Request(r) => processor.process_request(r),
JSONRPCMessage::Response(r) => processor.process_response(r),
JSONRPCMessage::Notification(n) => processor.process_notification(n),
JSONRPCMessage::BatchRequest(b) => processor.process_batch_request(b),
JSONRPCMessage::Error(e) => processor.process_error(e),
JSONRPCMessage::BatchResponse(b) => processor.process_batch_response(b),
}
}
info!("processor task exited (channel closed)");
}
});
// Task: write outgoing messages to stdout.
let stdout_writer_handle = tokio::spawn(async move {
let mut stdout = io::stdout();
while let Some(msg) = outgoing_rx.recv().await {
match serde_json::to_string(&msg) {
Ok(json) => {
if let Err(e) = stdout.write_all(json.as_bytes()).await {
error!("Failed to write to stdout: {e}");
break;
}
if let Err(e) = stdout.write_all(b"\n").await {
error!("Failed to write newline to stdout: {e}");
break;
}
if let Err(e) = stdout.flush().await {
error!("Failed to flush stdout: {e}");
break;
}
}
Err(e) => error!("Failed to serialize JSONRPCMessage: {e}"),
}
}
info!("stdout writer exited (channel closed)");
});
// Wait for all tasks to finish. The typical exit path is the stdin reader
// hitting EOF which, once it drops `incoming_tx`, propagates shutdown to
// the processor and then to the stdout task.
let _ = tokio::join!(stdin_reader_handle, processor_handle, stdout_writer_handle);
Ok(())
}

View File

@@ -1,114 +1,7 @@
//! Prototype MCP server.
#![deny(clippy::print_stdout, clippy::print_stderr)]
use std::io::Result as IoResult;
use mcp_types::JSONRPCMessage;
use tokio::io::AsyncBufReadExt;
use tokio::io::AsyncWriteExt;
use tokio::io::BufReader;
use tokio::io::{self};
use tokio::sync::mpsc;
use tracing::debug;
use tracing::error;
use tracing::info;
mod codex_tool_config;
mod codex_tool_runner;
mod message_processor;
use crate::message_processor::MessageProcessor;
/// Size of the bounded channels used to communicate between tasks. The value
/// is a balance between throughput and memory usage 128 messages should be
/// plenty for an interactive CLI.
const CHANNEL_CAPACITY: usize = 128;
use codex_mcp_server::run_main;
#[tokio::main]
async fn main() -> IoResult<()> {
// Install a simple subscriber so `tracing` output is visible. Users can
// control the log level with `RUST_LOG`.
tracing_subscriber::fmt()
.with_writer(std::io::stderr)
.init();
// Set up channels.
let (incoming_tx, mut incoming_rx) = mpsc::channel::<JSONRPCMessage>(CHANNEL_CAPACITY);
let (outgoing_tx, mut outgoing_rx) = mpsc::channel::<JSONRPCMessage>(CHANNEL_CAPACITY);
// Task: read from stdin, push to `incoming_tx`.
let stdin_reader_handle = tokio::spawn({
let incoming_tx = incoming_tx.clone();
async move {
let stdin = io::stdin();
let reader = BufReader::new(stdin);
let mut lines = reader.lines();
while let Some(line) = lines.next_line().await.unwrap_or_default() {
match serde_json::from_str::<JSONRPCMessage>(&line) {
Ok(msg) => {
if incoming_tx.send(msg).await.is_err() {
// Receiver gone nothing left to do.
break;
}
}
Err(e) => error!("Failed to deserialize JSONRPCMessage: {e}"),
}
}
debug!("stdin reader finished (EOF)");
}
});
// Task: process incoming messages.
let processor_handle = tokio::spawn({
let mut processor = MessageProcessor::new(outgoing_tx.clone());
async move {
while let Some(msg) = incoming_rx.recv().await {
match msg {
JSONRPCMessage::Request(r) => processor.process_request(r),
JSONRPCMessage::Response(r) => processor.process_response(r),
JSONRPCMessage::Notification(n) => processor.process_notification(n),
JSONRPCMessage::BatchRequest(b) => processor.process_batch_request(b),
JSONRPCMessage::Error(e) => processor.process_error(e),
JSONRPCMessage::BatchResponse(b) => processor.process_batch_response(b),
}
}
info!("processor task exited (channel closed)");
}
});
// Task: write outgoing messages to stdout.
let stdout_writer_handle = tokio::spawn(async move {
let mut stdout = io::stdout();
while let Some(msg) = outgoing_rx.recv().await {
match serde_json::to_string(&msg) {
Ok(json) => {
if let Err(e) = stdout.write_all(json.as_bytes()).await {
error!("Failed to write to stdout: {e}");
break;
}
if let Err(e) = stdout.write_all(b"\n").await {
error!("Failed to write newline to stdout: {e}");
break;
}
if let Err(e) = stdout.flush().await {
error!("Failed to flush stdout: {e}");
break;
}
}
Err(e) => error!("Failed to serialize JSONRPCMessage: {e}"),
}
}
info!("stdout writer exited (channel closed)");
});
// Wait for all tasks to finish. The typical exit path is the stdin reader
// hitting EOF which, once it drops `incoming_tx`, propagates shutdown to
// the processor and then to the stdout task.
let _ = tokio::join!(stdin_reader_handle, processor_handle, stdout_writer_handle);
async fn main() -> std::io::Result<()> {
run_main().await?;
Ok(())
}

View File

@@ -7,7 +7,9 @@ use strum_macros::EnumString;
use strum_macros::IntoStaticStr;
/// Commands that can be invoked by starting a message with a leading slash.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, EnumString, EnumIter, AsRefStr, IntoStaticStr)]
#[derive(
Debug, Clone, Copy, PartialEq, Eq, Hash, EnumString, EnumIter, AsRefStr, IntoStaticStr,
)]
#[strum(serialize_all = "kebab-case")]
pub enum SlashCommand {
Clear,