2025-08-24 11:10:53 -07:00
|
|
|
// Aggregates all former standalone integration tests as modules.
|
|
|
|
|
|
2025-09-26 15:49:08 +02:00
|
|
|
#[cfg(not(target_os = "windows"))]
|
|
|
|
|
mod abort_tasks;
|
2025-10-20 09:11:43 -07:00
|
|
|
#[cfg(not(target_os = "windows"))]
|
2025-10-23 17:00:48 +01:00
|
|
|
mod apply_patch_cli;
|
|
|
|
|
#[cfg(not(target_os = "windows"))]
|
2025-10-30 10:40:48 -07:00
|
|
|
mod apply_patch_freeform;
|
|
|
|
|
#[cfg(not(target_os = "windows"))]
|
2025-10-20 09:11:43 -07:00
|
|
|
mod approvals;
|
Improved token refresh handling to address "Re-connecting" behavior (#6231)
Currently, when the access token expires, we attempt to use the refresh
token to acquire a new access token. This works most of the time.
However, there are situations where the refresh token is expired,
exhausted (already used to perform a refresh), or revoked. In those
cases, the current logic treats the error as transient and attempts to
retry it repeatedly.
This PR changes the token refresh logic to differentiate between
permanent and transient errors. It also changes callers to treat the
permanent errors as fatal rather than retrying them. And it provides
better error messages to users so they understand how to address the
problem. These error messages should also help us further understand why
we're seeing examples of refresh token exhaustion.
Here is the error message in the CLI. The same text appears within the
extension.
<img width="863" height="38" alt="image"
src="https://github.com/user-attachments/assets/7ffc0d08-ebf0-4900-b9a9-265064202f4f"
/>
I also correct the spelling of "Re-connecting", which shouldn't have a
hyphen in it.
Testing: I manually tested these code paths by adding temporary code to
programmatically cause my refresh token to be exhausted (by calling the
token refresh endpoint in a tight loop more than 50 times). I then
simulated an access token expiration, which caused the token refresh
logic to be invoked. I confirmed that the updated logic properly handled
the error condition.
Note: We earlier discussed the idea of forcefully logging out the user
at the point where token refresh failed. I made several attempts to do
this, and all of them resulted in a bad UX. It's important to surface
this error to users in a way that explains the problem and tells them
that they need to log in again. We also previously discussed deleting
the auth.json file when this condition is detected. That also creates
problems because it effectively changes the auth status from logged in
to logged out, and this causes odd failures and inconsistent UX. I think
it's therefore better not to delete auth.json in this case. If the user
closes the CLI or VSCE and starts it again, we properly detect that the
access token is expired and the refresh token is "dead", and we force
the user to go through the login flow at that time.
This should address aspects of #6191, #5679, and #5505
2025-11-05 12:51:57 -06:00
|
|
|
mod auth_refresh;
|
2025-08-24 11:10:53 -07:00
|
|
|
mod cli_stream;
|
|
|
|
|
mod client;
|
2025-10-29 14:04:25 -07:00
|
|
|
mod codex_delegate;
|
2025-08-24 11:10:53 -07:00
|
|
|
mod compact;
|
2025-09-14 09:23:31 -04:00
|
|
|
mod compact_resume_fork;
|
2025-10-29 12:29:28 +00:00
|
|
|
mod deprecation_notice;
|
2025-08-24 11:10:53 -07:00
|
|
|
mod exec;
|
2025-09-02 15:44:29 -07:00
|
|
|
mod fork_conversation;
|
2025-10-08 11:02:50 +01:00
|
|
|
mod grep_files;
|
2025-10-20 13:34:44 -07:00
|
|
|
mod items;
|
2025-09-23 13:59:16 -07:00
|
|
|
mod json_result;
|
2025-10-07 19:33:19 +01:00
|
|
|
mod list_dir;
|
2025-08-24 11:10:53 -07:00
|
|
|
mod live_cli;
|
2025-09-12 10:38:12 -07:00
|
|
|
mod model_overrides;
|
chore: refactor tool handling (#4510)
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
2025-10-03 13:21:06 +01:00
|
|
|
mod model_tools;
|
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
|
|
|
mod otel;
|
2025-08-24 11:10:53 -07:00
|
|
|
mod prompt_caching;
|
2025-11-06 17:12:01 -06:00
|
|
|
mod quota_exceeded;
|
chore: refactor tool handling (#4510)
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
2025-10-03 13:21:06 +01:00
|
|
|
mod read_file;
|
2025-10-21 11:45:01 -07:00
|
|
|
mod resume;
|
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
|
|
|
mod review;
|
2025-09-26 10:13:37 -07:00
|
|
|
mod rmcp_client;
|
2025-09-14 19:33:19 -04:00
|
|
|
mod rollout_list_find;
|
2025-08-24 11:10:53 -07:00
|
|
|
mod seatbelt;
|
2025-10-04 19:16:36 -07:00
|
|
|
mod shell_serialization;
|
2025-08-24 11:10:53 -07:00
|
|
|
mod stream_error_allows_next_turn;
|
|
|
|
|
mod stream_no_completed;
|
chore: refactor tool handling (#4510)
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
2025-10-03 13:21:06 +01:00
|
|
|
mod tool_harness;
|
2025-10-05 17:10:49 +01:00
|
|
|
mod tool_parallelism;
|
chore: refactor tool handling (#4510)
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
2025-10-03 13:21:06 +01:00
|
|
|
mod tools;
|
2025-10-27 14:05:35 -07:00
|
|
|
mod truncation;
|
2025-10-31 14:46:24 +00:00
|
|
|
mod undo;
|
chore: refactor tool handling (#4510)
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
2025-10-03 13:21:06 +01:00
|
|
|
mod unified_exec;
|
2025-09-23 07:25:46 -07:00
|
|
|
mod user_notification;
|
feature: Add "!cmd" user shell execution (#2471)
feature: Add "!cmd" user shell execution
This change lets users run local shell commands directly from the TUI by
prefixing their input with ! (e.g. !ls). Output is truncated to keep the
exec cell usable, and Ctrl-C cleanly
interrupts long-running commands (e.g. !sleep 10000).
**Summary of changes**
- Route Op::RunUserShellCommand through a dedicated UserShellCommandTask
(core/src/tasks/user_shell.rs), keeping the task logic out of codex.rs.
- Reuse the existing tool router: the task constructs a ToolCall for the
local_shell tool and relies on ShellHandler, so no manual MCP tool
lookup is required.
- Emit exec lifecycle events (ExecCommandBegin/ExecCommandEnd) so the
TUI can show command metadata, live output, and exit status.
**End-to-end flow**
**TUI handling**
1. ChatWidget::submit_user_message (TUI) intercepts messages starting
with !.
2. Non-empty commands dispatch Op::RunUserShellCommand { command };
empty commands surface a help hint.
3. No UserInput items are created, so nothing is enqueued for the model.
**Core submission loop**
4. The submission loop routes the op to handlers::run_user_shell_command
(core/src/codex.rs).
5. A fresh TurnContext is created and Session::spawn_user_shell_command
enqueues UserShellCommandTask.
**Task execution**
6. UserShellCommandTask::run emits TaskStartedEvent, formats the
command, and prepares a ToolCall targeting local_shell.
7. ToolCallRuntime::handle_tool_call dispatches to ShellHandler.
**Shell tool runtime**
8. ShellHandler::run_exec_like launches the process via the unified exec
runtime, honoring sandbox and shell policies, and emits
ExecCommandBegin/End.
9. Stdout/stderr are captured for the UI, but the task does not turn the
resulting ToolOutput into a model response.
**Completion**
10. After ExecCommandEnd, the task finishes without an assistant
message; the session marks it complete and the exec cell displays the
final output.
**Conversation context**
- The command and its output never enter the conversation history or the
model prompt; the flow is local-only.
- Only exec/task events are emitted for UI rendering.
**Demo video**
https://github.com/user-attachments/assets/fcd114b0-4304-4448-a367-a04c43e0b996
2025-10-29 00:31:20 -07:00
|
|
|
mod user_shell_cmd;
|
chore: refactor tool handling (#4510)
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
2025-10-03 13:21:06 +01:00
|
|
|
mod view_image;
|