feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
use clap::Parser;
|
2025-04-29 09:59:35 -07:00
|
|
|
use clap::ValueEnum;
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
use llmx_common::CliConfigOverrides;
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
use std::path::PathBuf;
|
|
|
|
|
|
|
|
|
|
#[derive(Parser, Debug)]
|
|
|
|
|
#[command(version)]
|
|
|
|
|
pub struct Cli {
|
2025-09-14 19:33:19 -04:00
|
|
|
/// Action to perform. If omitted, runs a new non-interactive session.
|
|
|
|
|
#[command(subcommand)]
|
|
|
|
|
pub command: Option<Command>,
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
/// Optional image(s) to attach to the initial prompt.
|
|
|
|
|
#[arg(long = "image", short = 'i', value_name = "FILE", value_delimiter = ',', num_args = 1..)]
|
|
|
|
|
pub images: Vec<PathBuf>,
|
|
|
|
|
|
|
|
|
|
/// Model the agent should use.
|
|
|
|
|
#[arg(long, short = 'm')]
|
|
|
|
|
pub model: Option<String>,
|
|
|
|
|
|
2025-08-05 11:31:11 -07:00
|
|
|
#[arg(long = "oss", default_value_t = false)]
|
|
|
|
|
pub oss: bool,
|
|
|
|
|
|
feat: add support for --sandbox flag (#1476)
On a high-level, we try to design `config.toml` so that you don't have
to "comment out a lot of stuff" when testing different options.
Previously, defining a sandbox policy was somewhat at odds with this
principle because you would define the policy as attributes of
`[sandbox]` like so:
```toml
[sandbox]
mode = "workspace-write"
writable_roots = [ "/tmp" ]
```
but if you wanted to temporarily change to a read-only sandbox, you
might feel compelled to modify your file to be:
```toml
[sandbox]
mode = "read-only"
# mode = "workspace-write"
# writable_roots = [ "/tmp" ]
```
Technically, commenting out `writable_roots` would not be strictly
necessary, as `mode = "read-only"` would ignore `writable_roots`, but
it's still a reasonable thing to do to keep things tidy.
Currently, the various values for `mode` do not support that many
attributes, so this is not that hard to maintain, but one could imagine
this becoming more complex in the future.
In this PR, we change Codex CLI so that it no longer recognizes
`[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`,
and `[sandbox_workspace_write]` is used to further configure the sandbox
when when `sandbox_mode = "workspace-write"` is used:
```toml
sandbox_mode = "workspace-write"
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
```
This feels a bit more future-proof in that it is less tedious to
configure different sandboxes:
```toml
sandbox_mode = "workspace-write"
[sandbox_read_only]
# read-only options here...
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
[sandbox_danger_full_access]
# danger-full-access options here...
```
In this scheme, you never need to comment out the configuration for an
individual sandbox type: you only need to redefine `sandbox_mode`.
Relatedly, previous to this change, a user had to do `-c
sandbox.mode=read-only` to change the mode on the command line. With
this change, things are arguably a bit cleaner because the equivalent
option is `-c sandbox_mode=read-only` (and now `-c
sandbox_workspace_write=...` can be set separately).
Though more importantly, we introduce the `-s/--sandbox` option to the
CLI, which maps directly to `sandbox_mode` in `config.toml`, making
config override behavior easier to reason about. Moreover, as you can
see in the updates to the various Markdown files, it is much easier to
explain how to configure sandboxing when things like `--sandbox
read-only` can be used as an example.
Relatedly, this cleanup also made it straightforward to add support for
a `sandbox` option for Codex when used as an MCP server (see the changes
to `mcp-server/src/codex_tool_config.rs`).
Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
|
|
|
/// Select the sandbox policy to use when executing model-generated shell
|
|
|
|
|
/// commands.
|
2025-08-08 18:19:40 -07:00
|
|
|
#[arg(long = "sandbox", short = 's', value_enum)]
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
pub sandbox_mode: Option<llmx_common::SandboxModeCliArg>,
|
feat: add support for --sandbox flag (#1476)
On a high-level, we try to design `config.toml` so that you don't have
to "comment out a lot of stuff" when testing different options.
Previously, defining a sandbox policy was somewhat at odds with this
principle because you would define the policy as attributes of
`[sandbox]` like so:
```toml
[sandbox]
mode = "workspace-write"
writable_roots = [ "/tmp" ]
```
but if you wanted to temporarily change to a read-only sandbox, you
might feel compelled to modify your file to be:
```toml
[sandbox]
mode = "read-only"
# mode = "workspace-write"
# writable_roots = [ "/tmp" ]
```
Technically, commenting out `writable_roots` would not be strictly
necessary, as `mode = "read-only"` would ignore `writable_roots`, but
it's still a reasonable thing to do to keep things tidy.
Currently, the various values for `mode` do not support that many
attributes, so this is not that hard to maintain, but one could imagine
this becoming more complex in the future.
In this PR, we change Codex CLI so that it no longer recognizes
`[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`,
and `[sandbox_workspace_write]` is used to further configure the sandbox
when when `sandbox_mode = "workspace-write"` is used:
```toml
sandbox_mode = "workspace-write"
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
```
This feels a bit more future-proof in that it is less tedious to
configure different sandboxes:
```toml
sandbox_mode = "workspace-write"
[sandbox_read_only]
# read-only options here...
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
[sandbox_danger_full_access]
# danger-full-access options here...
```
In this scheme, you never need to comment out the configuration for an
individual sandbox type: you only need to redefine `sandbox_mode`.
Relatedly, previous to this change, a user had to do `-c
sandbox.mode=read-only` to change the mode on the command line. With
this change, things are arguably a bit cleaner because the equivalent
option is `-c sandbox_mode=read-only` (and now `-c
sandbox_workspace_write=...` can be set separately).
Though more importantly, we introduce the `-s/--sandbox` option to the
CLI, which maps directly to `sandbox_mode` in `config.toml`, making
config override behavior easier to reason about. Moreover, as you can
see in the updates to the various Markdown files, it is much easier to
explain how to configure sandboxing when things like `--sandbox
read-only` can be used as an example.
Relatedly, this cleanup also made it straightforward to add support for
a `sandbox` option for Codex when used as an MCP server (see the changes
to `mcp-server/src/codex_tool_config.rs`).
Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
|
|
|
|
2025-05-13 16:52:52 -07:00
|
|
|
/// Configuration profile from config.toml to specify default options.
|
|
|
|
|
#[arg(long = "profile", short = 'p')]
|
|
|
|
|
pub config_profile: Option<String>,
|
|
|
|
|
|
feat: add support for --sandbox flag (#1476)
On a high-level, we try to design `config.toml` so that you don't have
to "comment out a lot of stuff" when testing different options.
Previously, defining a sandbox policy was somewhat at odds with this
principle because you would define the policy as attributes of
`[sandbox]` like so:
```toml
[sandbox]
mode = "workspace-write"
writable_roots = [ "/tmp" ]
```
but if you wanted to temporarily change to a read-only sandbox, you
might feel compelled to modify your file to be:
```toml
[sandbox]
mode = "read-only"
# mode = "workspace-write"
# writable_roots = [ "/tmp" ]
```
Technically, commenting out `writable_roots` would not be strictly
necessary, as `mode = "read-only"` would ignore `writable_roots`, but
it's still a reasonable thing to do to keep things tidy.
Currently, the various values for `mode` do not support that many
attributes, so this is not that hard to maintain, but one could imagine
this becoming more complex in the future.
In this PR, we change Codex CLI so that it no longer recognizes
`[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`,
and `[sandbox_workspace_write]` is used to further configure the sandbox
when when `sandbox_mode = "workspace-write"` is used:
```toml
sandbox_mode = "workspace-write"
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
```
This feels a bit more future-proof in that it is less tedious to
configure different sandboxes:
```toml
sandbox_mode = "workspace-write"
[sandbox_read_only]
# read-only options here...
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
[sandbox_danger_full_access]
# danger-full-access options here...
```
In this scheme, you never need to comment out the configuration for an
individual sandbox type: you only need to redefine `sandbox_mode`.
Relatedly, previous to this change, a user had to do `-c
sandbox.mode=read-only` to change the mode on the command line. With
this change, things are arguably a bit cleaner because the equivalent
option is `-c sandbox_mode=read-only` (and now `-c
sandbox_workspace_write=...` can be set separately).
Though more importantly, we introduce the `-s/--sandbox` option to the
CLI, which maps directly to `sandbox_mode` in `config.toml`, making
config override behavior easier to reason about. Moreover, as you can
see in the updates to the various Markdown files, it is much easier to
explain how to configure sandboxing when things like `--sandbox
read-only` can be used as an example.
Relatedly, this cleanup also made it straightforward to add support for
a `sandbox` option for Codex when used as an MCP server (see the changes
to `mcp-server/src/codex_tool_config.rs`).
Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
|
|
|
/// Convenience alias for low-friction sandboxed automatic execution (-a on-failure, --sandbox workspace-write).
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
#[arg(long = "full-auto", default_value_t = false)]
|
|
|
|
|
pub full_auto: bool,
|
2025-04-27 21:47:50 -07:00
|
|
|
|
2025-06-25 12:36:10 -07:00
|
|
|
/// Skip all confirmation prompts and execute commands without sandboxing.
|
|
|
|
|
/// EXTREMELY DANGEROUS. Intended solely for running in environments that are externally sandboxed.
|
|
|
|
|
#[arg(
|
|
|
|
|
long = "dangerously-bypass-approvals-and-sandbox",
|
2025-08-06 22:54:54 -07:00
|
|
|
alias = "yolo",
|
2025-06-25 12:36:10 -07:00
|
|
|
default_value_t = false,
|
|
|
|
|
conflicts_with = "full_auto"
|
|
|
|
|
)]
|
|
|
|
|
pub dangerously_bypass_approvals_and_sandbox: bool,
|
|
|
|
|
|
2025-05-04 10:57:12 -07:00
|
|
|
/// Tell the agent to use the specified directory as its working root.
|
|
|
|
|
#[clap(long = "cd", short = 'C', value_name = "DIR")]
|
|
|
|
|
pub cwd: Option<PathBuf>,
|
|
|
|
|
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
/// Allow running Llmx outside a Git repository.
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
#[arg(long = "skip-git-repo-check", default_value_t = false)]
|
|
|
|
|
pub skip_git_repo_check: bool,
|
|
|
|
|
|
2025-09-23 13:59:16 -07:00
|
|
|
/// Path to a JSON Schema file describing the model's final response shape.
|
|
|
|
|
#[arg(long = "output-schema", value_name = "FILE")]
|
|
|
|
|
pub output_schema: Option<PathBuf>,
|
|
|
|
|
|
feat: add support for -c/--config to override individual config items (#1137)
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
2025-05-27 23:11:44 -07:00
|
|
|
#[clap(skip)]
|
|
|
|
|
pub config_overrides: CliConfigOverrides,
|
2025-04-25 12:08:18 -07:00
|
|
|
|
2025-04-29 09:59:35 -07:00
|
|
|
/// Specifies color settings for use in the output.
|
|
|
|
|
#[arg(long = "color", value_enum, default_value_t = Color::Auto)]
|
|
|
|
|
pub color: Color,
|
|
|
|
|
|
2025-07-17 15:10:15 -07:00
|
|
|
/// Print events to stdout as JSONL.
|
Remove legacy codex exec --json format (#4525)
`codex exec --json` now maps to the behavior of `codex exec
--experimental-json` with new event and item shapes.
Thread events:
- thread.started
- turn.started
- turn.completed
- turn.failed
- item.started
- item.updated
- item.completed
Item types:
- assistant_message
- reasoning
- command_execution
- file_change
- mcp_tool_call
- web_search
- todo_list
- error
Sample output:
<details>
`codex exec "list my assigned github issues" --json | jq`
```
{
"type": "thread.started",
"thread_id": "01999ce5-f229-7661-8570-53312bd47ea3"
}
{
"type": "turn.started"
}
{
"type": "item.completed",
"item": {
"id": "item_0",
"item_type": "reasoning",
"text": "**Planning to list assigned GitHub issues**"
}
}
{
"type": "item.started",
"item": {
"id": "item_1",
"item_type": "mcp_tool_call",
"server": "github",
"tool": "search_issues",
"status": "in_progress"
}
}
{
"type": "item.completed",
"item": {
"id": "item_1",
"item_type": "mcp_tool_call",
"server": "github",
"tool": "search_issues",
"status": "completed"
}
}
{
"type": "item.completed",
"item": {
"id": "item_2",
"item_type": "reasoning",
"text": "**Organizing final message structure**"
}
}
{
"type": "item.completed",
"item": {
"id": "item_3",
"item_type": "assistant_message",
"text": "**Assigned Issues**\n- openai/codex#3267 – “stream error: stream disconnected before completion…” (bug) – last update 2025-09-08\n- openai/codex#3257 – “You've hit your usage limit. Try again in 4 days 20 hours 9 minutes.” – last update 2025-09-23\n- openai/codex#3054 – “reqwest SSL panic (library has no ciphers)” (bug) – last update 2025-09-03\n- openai/codex#3051 – “thread 'main' panicked at linux-sandbox/src/linux_run_main.rs:53:5:” (bug) – last update 2025-09-10\n- openai/codex#3004 – “Auto-compact when approaching context limit” (enhancement) – last update 2025-09-26\n- openai/codex#2916 – “Feature request: Add OpenAI service tier support for cost optimization” – last update 2025-09-12\n- openai/codex#1581 – “stream error: stream disconnected before completion: stream closed before response.complete; retrying...” (bug) – last update 2025-09-17"
}
}
{
"type": "turn.completed",
"usage": {
"input_tokens": 34785,
"cached_input_tokens": 12544,
"output_tokens": 560
}
}
```
</details>
2025-09-30 17:21:37 -07:00
|
|
|
#[arg(long = "json", alias = "experimental-json", default_value_t = false)]
|
2025-07-17 15:10:15 -07:00
|
|
|
pub json: bool,
|
|
|
|
|
|
2025-05-19 16:08:18 -07:00
|
|
|
/// Specifies file where the last message from the agent should be written.
|
2025-10-03 09:22:12 -07:00
|
|
|
#[arg(long = "output-last-message", short = 'o', value_name = "FILE")]
|
2025-05-19 16:08:18 -07:00
|
|
|
pub last_message_file: Option<PathBuf>,
|
|
|
|
|
|
2025-05-30 14:41:55 -07:00
|
|
|
/// Initial instructions for the agent. If not provided as an argument (or
|
|
|
|
|
/// if `-` is used), instructions are read from stdin.
|
2025-10-07 08:07:31 -07:00
|
|
|
#[arg(value_name = "PROMPT", value_hint = clap::ValueHint::Other)]
|
2025-05-30 14:41:55 -07:00
|
|
|
pub prompt: Option<String>,
|
2025-04-29 09:59:35 -07:00
|
|
|
}
|
|
|
|
|
|
2025-09-14 19:33:19 -04:00
|
|
|
#[derive(Debug, clap::Subcommand)]
|
|
|
|
|
pub enum Command {
|
|
|
|
|
/// Resume a previous session by id or pick the most recent with --last.
|
|
|
|
|
Resume(ResumeArgs),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Parser, Debug)]
|
|
|
|
|
pub struct ResumeArgs {
|
|
|
|
|
/// Conversation/session id (UUID). When provided, resumes this session.
|
|
|
|
|
/// If omitted, use --last to pick the most recent recorded session.
|
|
|
|
|
#[arg(value_name = "SESSION_ID")]
|
|
|
|
|
pub session_id: Option<String>,
|
|
|
|
|
|
|
|
|
|
/// Resume the most recent recorded session (newest) without specifying an id.
|
|
|
|
|
#[arg(long = "last", default_value_t = false, conflicts_with = "session_id")]
|
|
|
|
|
pub last: bool,
|
|
|
|
|
|
|
|
|
|
/// Prompt to send after resuming the session. If `-` is used, read from stdin.
|
2025-10-07 08:07:31 -07:00
|
|
|
#[arg(value_name = "PROMPT", value_hint = clap::ValueHint::Other)]
|
2025-09-14 19:33:19 -04:00
|
|
|
pub prompt: Option<String>,
|
|
|
|
|
}
|
|
|
|
|
|
2025-04-29 09:59:35 -07:00
|
|
|
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, ValueEnum)]
|
|
|
|
|
#[value(rename_all = "kebab-case")]
|
|
|
|
|
pub enum Color {
|
|
|
|
|
Always,
|
|
|
|
|
Never,
|
|
|
|
|
#[default]
|
|
|
|
|
Auto,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
}
|