Files
llmx/codex-rs/cli/src/debug_sandbox.rs

226 lines
6.6 KiB
Rust
Raw Normal View History

fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
use std::path::PathBuf;
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
use codex_common::CliConfigOverrides;
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
use codex_core::config::Config;
use codex_core::config::ConfigOverrides;
use codex_core::exec_env::create_env;
use codex_core::landlock::spawn_command_under_linux_sandbox;
#[cfg(target_os = "macos")]
use codex_core::seatbelt::spawn_command_under_seatbelt;
use codex_core::spawn::StdioPolicy;
use codex_protocol::config_types::SandboxMode;
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
use crate::LandlockCommand;
use crate::SeatbeltCommand;
use crate::WindowsCommand;
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
use crate::exit_status::handle_exit_status;
#[cfg(target_os = "macos")]
pub async fn run_command_under_seatbelt(
command: SeatbeltCommand,
codex_linux_sandbox_exe: Option<PathBuf>,
) -> anyhow::Result<()> {
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
let SeatbeltCommand {
full_auto,
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
config_overrides,
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
command,
} = command;
run_command_under_sandbox(
full_auto,
command,
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
config_overrides,
codex_linux_sandbox_exe,
SandboxType::Seatbelt,
)
.await
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
}
#[cfg(not(target_os = "macos"))]
pub async fn run_command_under_seatbelt(
_command: SeatbeltCommand,
_codex_linux_sandbox_exe: Option<PathBuf>,
) -> anyhow::Result<()> {
anyhow::bail!("Seatbelt sandbox is only available on macOS");
}
pub async fn run_command_under_landlock(
command: LandlockCommand,
codex_linux_sandbox_exe: Option<PathBuf>,
) -> anyhow::Result<()> {
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
let LandlockCommand {
full_auto,
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
config_overrides,
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
command,
} = command;
run_command_under_sandbox(
full_auto,
command,
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
config_overrides,
codex_linux_sandbox_exe,
SandboxType::Landlock,
)
.await
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
}
pub async fn run_command_under_windows(
command: WindowsCommand,
codex_linux_sandbox_exe: Option<PathBuf>,
) -> anyhow::Result<()> {
let WindowsCommand {
full_auto,
config_overrides,
command,
} = command;
run_command_under_sandbox(
full_auto,
command,
config_overrides,
codex_linux_sandbox_exe,
SandboxType::Windows,
)
.await
}
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
enum SandboxType {
#[cfg(target_os = "macos")]
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
Seatbelt,
Landlock,
Windows,
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
}
async fn run_command_under_sandbox(
full_auto: bool,
command: Vec<String>,
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
config_overrides: CliConfigOverrides,
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
codex_linux_sandbox_exe: Option<PathBuf>,
sandbox_type: SandboxType,
) -> anyhow::Result<()> {
feat: add support for --sandbox flag (#1476) On a high-level, we try to design `config.toml` so that you don't have to "comment out a lot of stuff" when testing different options. Previously, defining a sandbox policy was somewhat at odds with this principle because you would define the policy as attributes of `[sandbox]` like so: ```toml [sandbox] mode = "workspace-write" writable_roots = [ "/tmp" ] ``` but if you wanted to temporarily change to a read-only sandbox, you might feel compelled to modify your file to be: ```toml [sandbox] mode = "read-only" # mode = "workspace-write" # writable_roots = [ "/tmp" ] ``` Technically, commenting out `writable_roots` would not be strictly necessary, as `mode = "read-only"` would ignore `writable_roots`, but it's still a reasonable thing to do to keep things tidy. Currently, the various values for `mode` do not support that many attributes, so this is not that hard to maintain, but one could imagine this becoming more complex in the future. In this PR, we change Codex CLI so that it no longer recognizes `[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`, and `[sandbox_workspace_write]` is used to further configure the sandbox when when `sandbox_mode = "workspace-write"` is used: ```toml sandbox_mode = "workspace-write" [sandbox_workspace_write] writable_roots = [ "/tmp" ] ``` This feels a bit more future-proof in that it is less tedious to configure different sandboxes: ```toml sandbox_mode = "workspace-write" [sandbox_read_only] # read-only options here... [sandbox_workspace_write] writable_roots = [ "/tmp" ] [sandbox_danger_full_access] # danger-full-access options here... ``` In this scheme, you never need to comment out the configuration for an individual sandbox type: you only need to redefine `sandbox_mode`. Relatedly, previous to this change, a user had to do `-c sandbox.mode=read-only` to change the mode on the command line. With this change, things are arguably a bit cleaner because the equivalent option is `-c sandbox_mode=read-only` (and now `-c sandbox_workspace_write=...` can be set separately). Though more importantly, we introduce the `-s/--sandbox` option to the CLI, which maps directly to `sandbox_mode` in `config.toml`, making config override behavior easier to reason about. Moreover, as you can see in the updates to the various Markdown files, it is much easier to explain how to configure sandboxing when things like `--sandbox read-only` can be used as an example. Relatedly, this cleanup also made it straightforward to add support for a `sandbox` option for Codex when used as an MCP server (see the changes to `mcp-server/src/codex_tool_config.rs`). Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
let sandbox_mode = create_sandbox_mode(full_auto);
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
let config = Config::load_with_cli_overrides(
config_overrides
.parse_overrides()
.map_err(anyhow::Error::msg)?,
ConfigOverrides {
feat: add support for --sandbox flag (#1476) On a high-level, we try to design `config.toml` so that you don't have to "comment out a lot of stuff" when testing different options. Previously, defining a sandbox policy was somewhat at odds with this principle because you would define the policy as attributes of `[sandbox]` like so: ```toml [sandbox] mode = "workspace-write" writable_roots = [ "/tmp" ] ``` but if you wanted to temporarily change to a read-only sandbox, you might feel compelled to modify your file to be: ```toml [sandbox] mode = "read-only" # mode = "workspace-write" # writable_roots = [ "/tmp" ] ``` Technically, commenting out `writable_roots` would not be strictly necessary, as `mode = "read-only"` would ignore `writable_roots`, but it's still a reasonable thing to do to keep things tidy. Currently, the various values for `mode` do not support that many attributes, so this is not that hard to maintain, but one could imagine this becoming more complex in the future. In this PR, we change Codex CLI so that it no longer recognizes `[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`, and `[sandbox_workspace_write]` is used to further configure the sandbox when when `sandbox_mode = "workspace-write"` is used: ```toml sandbox_mode = "workspace-write" [sandbox_workspace_write] writable_roots = [ "/tmp" ] ``` This feels a bit more future-proof in that it is less tedious to configure different sandboxes: ```toml sandbox_mode = "workspace-write" [sandbox_read_only] # read-only options here... [sandbox_workspace_write] writable_roots = [ "/tmp" ] [sandbox_danger_full_access] # danger-full-access options here... ``` In this scheme, you never need to comment out the configuration for an individual sandbox type: you only need to redefine `sandbox_mode`. Relatedly, previous to this change, a user had to do `-c sandbox.mode=read-only` to change the mode on the command line. With this change, things are arguably a bit cleaner because the equivalent option is `-c sandbox_mode=read-only` (and now `-c sandbox_workspace_write=...` can be set separately). Though more importantly, we introduce the `-s/--sandbox` option to the CLI, which maps directly to `sandbox_mode` in `config.toml`, making config override behavior easier to reason about. Moreover, as you can see in the updates to the various Markdown files, it is much easier to explain how to configure sandboxing when things like `--sandbox read-only` can be used as an example. Relatedly, this cleanup also made it straightforward to add support for a `sandbox` option for Codex when used as an MCP server (see the changes to `mcp-server/src/codex_tool_config.rs`). Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
sandbox_mode: Some(sandbox_mode),
feat: add support for -c/--config to override individual config items (#1137) This PR introduces support for `-c`/`--config` so users can override individual config values on the command line using `--config name=value`. Example: ``` codex --config model=o4-mini ``` Making it possible to set arbitrary config values on the command line results in a more flexible configuration scheme and makes it easier to provide single-line examples that can be copy-pasted from documentation. Effectively, it means there are four levels of configuration for some values: - Default value (e.g., `model` currently defaults to `o4-mini`) - Value in `config.toml` (e.g., user could override the default to be `model = "o3"` in their `config.toml`) - Specifying `-c` or `--config` to override `model` (e.g., user can include `-c model=o3` in their list of args to Codex) - If available, a config-specific flag can be used, which takes precedence over `-c` (e.g., user can specify `--model o3` in their list of args to Codex) Now that it is possible to specify anything that could be configured in `config.toml` on the command line using `-c`, we do not need to have a custom flag for every possible config option (which can clutter the output of `--help`). To that end, as part of this PR, we drop support for the `--disable-response-storage` flag, as users can now specify `-c disable_response_storage=true` to get the equivalent functionality. Under the hood, this works by loading the `config.toml` into a `toml::Value`. Then for each `key=value`, we create a small synthetic TOML file with `value` so that we can run the TOML parser to get the equivalent `toml::Value`. We then parse `key` to determine the point in the original `toml::Value` to do the insert/replace. Once all of the overrides from `-c` args have been applied, the `toml::Value` is deserialized into a `ConfigToml` and then the `ConfigOverrides` are applied, as before.
2025-05-27 23:11:44 -07:00
codex_linux_sandbox_exe,
..Default::default()
},
)
.await?;
// In practice, this should be `std::env::current_dir()` because this CLI
// does not support `--cwd`, but let's use the config value for consistency.
let cwd = config.cwd.clone();
// For now, we always use the same cwd for both the command and the
// sandbox policy. In the future, we could add a CLI option to set them
// separately.
let sandbox_policy_cwd = cwd.clone();
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
let stdio_policy = StdioPolicy::Inherit;
let env = create_env(&config.shell_environment_policy);
// Special-case Windows sandbox: execute and exit the process to emulate inherited stdio.
if let SandboxType::Windows = sandbox_type {
#[cfg(target_os = "windows")]
{
use codex_windows_sandbox::run_windows_sandbox_capture;
let policy_str = match &config.sandbox_policy {
codex_core::protocol::SandboxPolicy::DangerFullAccess => "workspace-write",
codex_core::protocol::SandboxPolicy::ReadOnly => "read-only",
codex_core::protocol::SandboxPolicy::WorkspaceWrite { .. } => "workspace-write",
};
let sandbox_cwd = sandbox_policy_cwd.clone();
let cwd_clone = cwd.clone();
let env_map = env.clone();
let command_vec = command.clone();
let base_dir = config.codex_home.clone();
let res = tokio::task::spawn_blocking(move || {
run_windows_sandbox_capture(
policy_str,
&sandbox_cwd,
command_vec,
&cwd_clone,
env_map,
None,
Some(base_dir.as_path()),
)
})
.await;
let capture = match res {
Ok(Ok(v)) => v,
Ok(Err(err)) => {
eprintln!("windows sandbox failed: {err}");
std::process::exit(1);
}
Err(join_err) => {
eprintln!("windows sandbox join error: {join_err}");
std::process::exit(1);
}
};
if !capture.stdout.is_empty() {
use std::io::Write;
let _ = std::io::stdout().write_all(&capture.stdout);
}
if !capture.stderr.is_empty() {
use std::io::Write;
let _ = std::io::stderr().write_all(&capture.stderr);
}
std::process::exit(capture.exit_code);
}
#[cfg(not(target_os = "windows"))]
{
anyhow::bail!("Windows sandbox is only available on Windows");
}
}
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
let mut child = match sandbox_type {
#[cfg(target_os = "macos")]
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
SandboxType::Seatbelt => {
spawn_command_under_seatbelt(
command,
cwd,
&config.sandbox_policy,
sandbox_policy_cwd.as_path(),
stdio_policy,
env,
)
.await?
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
}
SandboxType::Landlock => {
#[expect(clippy::expect_used)]
let codex_linux_sandbox_exe = config
.codex_linux_sandbox_exe
.expect("codex-linux-sandbox executable not found");
spawn_command_under_linux_sandbox(
codex_linux_sandbox_exe,
command,
cwd,
&config.sandbox_policy,
sandbox_policy_cwd.as_path(),
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
stdio_policy,
env,
)
.await?
}
SandboxType::Windows => {
unreachable!("Windows sandbox should have been handled above");
}
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
};
let status = child.wait().await?;
handle_exit_status(status);
}
feat: add support for --sandbox flag (#1476) On a high-level, we try to design `config.toml` so that you don't have to "comment out a lot of stuff" when testing different options. Previously, defining a sandbox policy was somewhat at odds with this principle because you would define the policy as attributes of `[sandbox]` like so: ```toml [sandbox] mode = "workspace-write" writable_roots = [ "/tmp" ] ``` but if you wanted to temporarily change to a read-only sandbox, you might feel compelled to modify your file to be: ```toml [sandbox] mode = "read-only" # mode = "workspace-write" # writable_roots = [ "/tmp" ] ``` Technically, commenting out `writable_roots` would not be strictly necessary, as `mode = "read-only"` would ignore `writable_roots`, but it's still a reasonable thing to do to keep things tidy. Currently, the various values for `mode` do not support that many attributes, so this is not that hard to maintain, but one could imagine this becoming more complex in the future. In this PR, we change Codex CLI so that it no longer recognizes `[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`, and `[sandbox_workspace_write]` is used to further configure the sandbox when when `sandbox_mode = "workspace-write"` is used: ```toml sandbox_mode = "workspace-write" [sandbox_workspace_write] writable_roots = [ "/tmp" ] ``` This feels a bit more future-proof in that it is less tedious to configure different sandboxes: ```toml sandbox_mode = "workspace-write" [sandbox_read_only] # read-only options here... [sandbox_workspace_write] writable_roots = [ "/tmp" ] [sandbox_danger_full_access] # danger-full-access options here... ``` In this scheme, you never need to comment out the configuration for an individual sandbox type: you only need to redefine `sandbox_mode`. Relatedly, previous to this change, a user had to do `-c sandbox.mode=read-only` to change the mode on the command line. With this change, things are arguably a bit cleaner because the equivalent option is `-c sandbox_mode=read-only` (and now `-c sandbox_workspace_write=...` can be set separately). Though more importantly, we introduce the `-s/--sandbox` option to the CLI, which maps directly to `sandbox_mode` in `config.toml`, making config override behavior easier to reason about. Moreover, as you can see in the updates to the various Markdown files, it is much easier to explain how to configure sandboxing when things like `--sandbox read-only` can be used as an example. Relatedly, this cleanup also made it straightforward to add support for a `sandbox` option for Codex when used as an MCP server (see the changes to `mcp-server/src/codex_tool_config.rs`). Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
pub fn create_sandbox_mode(full_auto: bool) -> SandboxMode {
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
if full_auto {
feat: add support for --sandbox flag (#1476) On a high-level, we try to design `config.toml` so that you don't have to "comment out a lot of stuff" when testing different options. Previously, defining a sandbox policy was somewhat at odds with this principle because you would define the policy as attributes of `[sandbox]` like so: ```toml [sandbox] mode = "workspace-write" writable_roots = [ "/tmp" ] ``` but if you wanted to temporarily change to a read-only sandbox, you might feel compelled to modify your file to be: ```toml [sandbox] mode = "read-only" # mode = "workspace-write" # writable_roots = [ "/tmp" ] ``` Technically, commenting out `writable_roots` would not be strictly necessary, as `mode = "read-only"` would ignore `writable_roots`, but it's still a reasonable thing to do to keep things tidy. Currently, the various values for `mode` do not support that many attributes, so this is not that hard to maintain, but one could imagine this becoming more complex in the future. In this PR, we change Codex CLI so that it no longer recognizes `[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`, and `[sandbox_workspace_write]` is used to further configure the sandbox when when `sandbox_mode = "workspace-write"` is used: ```toml sandbox_mode = "workspace-write" [sandbox_workspace_write] writable_roots = [ "/tmp" ] ``` This feels a bit more future-proof in that it is less tedious to configure different sandboxes: ```toml sandbox_mode = "workspace-write" [sandbox_read_only] # read-only options here... [sandbox_workspace_write] writable_roots = [ "/tmp" ] [sandbox_danger_full_access] # danger-full-access options here... ``` In this scheme, you never need to comment out the configuration for an individual sandbox type: you only need to redefine `sandbox_mode`. Relatedly, previous to this change, a user had to do `-c sandbox.mode=read-only` to change the mode on the command line. With this change, things are arguably a bit cleaner because the equivalent option is `-c sandbox_mode=read-only` (and now `-c sandbox_workspace_write=...` can be set separately). Though more importantly, we introduce the `-s/--sandbox` option to the CLI, which maps directly to `sandbox_mode` in `config.toml`, making config override behavior easier to reason about. Moreover, as you can see in the updates to the various Markdown files, it is much easier to explain how to configure sandboxing when things like `--sandbox read-only` can be used as an example. Relatedly, this cleanup also made it straightforward to add support for a `sandbox` option for Codex when used as an MCP server (see the changes to `mcp-server/src/codex_tool_config.rs`). Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
SandboxMode::WorkspaceWrite
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
} else {
feat: add support for --sandbox flag (#1476) On a high-level, we try to design `config.toml` so that you don't have to "comment out a lot of stuff" when testing different options. Previously, defining a sandbox policy was somewhat at odds with this principle because you would define the policy as attributes of `[sandbox]` like so: ```toml [sandbox] mode = "workspace-write" writable_roots = [ "/tmp" ] ``` but if you wanted to temporarily change to a read-only sandbox, you might feel compelled to modify your file to be: ```toml [sandbox] mode = "read-only" # mode = "workspace-write" # writable_roots = [ "/tmp" ] ``` Technically, commenting out `writable_roots` would not be strictly necessary, as `mode = "read-only"` would ignore `writable_roots`, but it's still a reasonable thing to do to keep things tidy. Currently, the various values for `mode` do not support that many attributes, so this is not that hard to maintain, but one could imagine this becoming more complex in the future. In this PR, we change Codex CLI so that it no longer recognizes `[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`, and `[sandbox_workspace_write]` is used to further configure the sandbox when when `sandbox_mode = "workspace-write"` is used: ```toml sandbox_mode = "workspace-write" [sandbox_workspace_write] writable_roots = [ "/tmp" ] ``` This feels a bit more future-proof in that it is less tedious to configure different sandboxes: ```toml sandbox_mode = "workspace-write" [sandbox_read_only] # read-only options here... [sandbox_workspace_write] writable_roots = [ "/tmp" ] [sandbox_danger_full_access] # danger-full-access options here... ``` In this scheme, you never need to comment out the configuration for an individual sandbox type: you only need to redefine `sandbox_mode`. Relatedly, previous to this change, a user had to do `-c sandbox.mode=read-only` to change the mode on the command line. With this change, things are arguably a bit cleaner because the equivalent option is `-c sandbox_mode=read-only` (and now `-c sandbox_workspace_write=...` can be set separately). Though more importantly, we introduce the `-s/--sandbox` option to the CLI, which maps directly to `sandbox_mode` in `config.toml`, making config override behavior easier to reason about. Moreover, as you can see in the updates to the various Markdown files, it is much easier to explain how to configure sandboxing when things like `--sandbox read-only` can be used as an example. Relatedly, this cleanup also made it straightforward to add support for a `sandbox` option for Codex when used as an MCP server (see the changes to `mcp-server/src/codex_tool_config.rs`). Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
SandboxMode::ReadOnly
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086) Historically, we spawned the Seatbelt and Landlock sandboxes in substantially different ways: For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy specified as an arg followed by the original command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219 For **Landlock/Seccomp**, we would do `tokio::runtime::Builder::new_current_thread()`, _invoke Landlock/Seccomp APIs to modify the permissions of that new thread_, and then spawn the command: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49 While it is neat that Landlock/Seccomp supports applying a policy to only one thread without having to apply it to the entire process, it requires us to maintain two different codepaths and is a bit harder to reason about. The tipping point was https://github.com/openai/codex/pull/1061, in which we had to start building up the `env` in an unexpected way for the existing Landlock/Seccomp approach to continue to work. This PR overhauls things so that we do similar things for Mac and Linux. It turned out that we were already building our own "helper binary" comparable to Mac's `sandbox-exec` as part of the `cli` crate: https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12 We originally created this to build a small binary to include with the Node.js version of the Codex CLI to provide support for Linux sandboxing. Though the sticky bit is that, at this point, we still want to deploy the Rust version of Codex as a single, standalone binary rather than a CLI and a supporting sandboxing binary. To satisfy this goal, we use "the arg0 trick," in which we: * use `std::env::current_exe()` to get the path to the CLI that is currently running * use the CLI as the `program` for the `Command` * set `"codex-linux-sandbox"` as arg0 for the `Command` A CLI that supports sandboxing should check arg0 at the start of the program. If it is `"codex-linux-sandbox"`, it must invoke `codex_linux_sandbox::run_main()`, which runs the CLI as if it were `codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn the original command, so do _replace_ the process rather than spawn a subprocess. Incidentally, we do this before starting the Tokio runtime, so the process should only have one thread when `execvp(3)` is called. Because the `core` crate that needs to spawn the Linux sandboxing is not a CLI in its own right, this means that every CLI that includes `core` and relies on this behavior has to (1) implement it and (2) provide the path to the sandboxing executable. While the path is almost always `std::env::current_exe()`, we needed to make this configurable for integration tests, so `Config` now has a `codex_linux_sandbox_exe: Option<PathBuf>` property to facilitate threading this through, introduced in https://github.com/openai/codex/pull/1089. This common pattern is now captured in `codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs` functions that should use it have been updated as part of this PR. The `codex-linux-sandbox` crate added to the Cargo workspace as part of this PR now has the bulk of the Landlock/Seccomp logic, which makes `core` a bit simpler. Indeed, `core/src/exec_linux.rs` and `core/src/landlock.rs` were removed/ported as part of this PR. I also moved the unit tests for this code into an integration test, `linux-sandbox/tests/landlock.rs`, in which I use `env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for `codex_linux_sandbox_exe` since `std::env::current_exe()` is not appropriate in that case.
2025-05-23 11:37:07 -07:00
}
}