feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
[package]
|
|
|
|
|
name = "codex-tui"
|
2025-05-07 10:08:06 -07:00
|
|
|
version = { workspace = true }
|
2025-05-07 08:37:48 -07:00
|
|
|
edition = "2024"
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
|
|
|
[[bin]]
|
|
|
|
|
name = "codex-tui"
|
|
|
|
|
path = "src/main.rs"
|
|
|
|
|
|
|
|
|
|
[lib]
|
|
|
|
|
name = "codex_tui"
|
|
|
|
|
path = "src/lib.rs"
|
|
|
|
|
|
2025-05-08 09:46:18 -07:00
|
|
|
[lints]
|
|
|
|
|
workspace = true
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
[dependencies]
|
|
|
|
|
anyhow = "1"
|
fix: introduce ResponseInputItem::McpToolCallOutput variant (#1151)
The output of an MCP server tool call can be one of several types, but
to date, we treated all outputs as text by showing the serialized JSON
as the "tool output" in Codex:
https://github.com/openai/codex/blob/25a9949c49194d5a64de54a11bcc5b4724ac9bd5/codex-rs/mcp-types/src/lib.rs#L96-L101
This PR adds support for the `ImageContent` variant so we can now
display an image output from an MCP tool call.
In making this change, we introduce a new
`ResponseInputItem::McpToolCallOutput` variant so that we can work with
the `mcp_types::CallToolResult` directly when the function call is made
to an MCP server.
Though arguably the more significant change is the introduction of
`HistoryCell::CompletedMcpToolCallWithImageOutput`, which is a cell that
uses `ratatui_image` to render an image into the terminal. To support
this, we introduce `ImageRenderCache`, cache a
`ratatui_image::picker::Picker`, and `ensure_image_cache()` to cache the
appropriate scaled image data and dimensions based on the current
terminal size.
To test, I created a minimal `package.json`:
```json
{
"name": "kitty-mcp",
"version": "1.0.0",
"type": "module",
"description": "MCP that returns image of kitty",
"main": "index.js",
"dependencies": {
"@modelcontextprotocol/sdk": "^1.12.0"
}
}
```
with the following `index.js` to define the MCP server:
```js
#!/usr/bin/env node
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { readFile } from "node:fs/promises";
import { join } from "node:path";
const IMAGE_URI = "image://Ada.png";
const server = new McpServer({
name: "Demo",
version: "1.0.0",
});
server.tool(
"get-cat-image",
"If you need a cat image, this tool will provide one.",
async () => ({
content: [
{ type: "image", data: await getAdaPngBase64(), mimeType: "image/png" },
],
})
);
server.resource("Ada the Cat", IMAGE_URI, async (uri) => {
const base64Image = await getAdaPngBase64();
return {
contents: [
{
uri: uri.href,
mimeType: "image/png",
blob: base64Image,
},
],
};
});
async function getAdaPngBase64() {
const __dirname = new URL(".", import.meta.url).pathname;
// From https://github.com/benjajaja/ratatui-image/blob/9705ce2c59ec669abbce2924cbfd1f5ae22c9860/assets/Ada.png
const filePath = join(__dirname, "Ada.png");
const imageData = await readFile(filePath);
const base64Image = imageData.toString("base64");
return base64Image;
}
const transport = new StdioServerTransport();
await server.connect(transport);
```
With the local changes from this PR, I added the following to my
`config.toml`:
```toml
[mcp_servers.kitty]
command = "node"
args = ["/Users/mbolin/code/kitty-mcp/index.js"]
```
Running the TUI from source:
```
cargo run --bin codex -- --model o3 'I need a picture of a cat'
```
I get:
<img width="732" alt="image"
src="https://github.com/user-attachments/assets/bf80b721-9ca0-4d81-aec7-77d6899e2869"
/>
Now, that said, I have only tested in iTerm and there is definitely some
funny business with getting an accurate character-to-pixel ratio
(sometimes the `CompletedMcpToolCallWithImageOutput` thinks it needs 10
rows to render instead of 4), so there is still work to be done here.
2025-05-28 19:03:17 -07:00
|
|
|
base64 = "0.22.1"
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
clap = { version = "4", features = ["derive"] }
|
|
|
|
|
codex-ansi-escape = { path = "../ansi-escape" }
|
2025-05-06 17:38:56 -07:00
|
|
|
codex-core = { path = "../core" }
|
2025-06-24 17:48:51 -07:00
|
|
|
codex-common = { path = "../common", features = [
|
|
|
|
|
"cli",
|
|
|
|
|
"elapsed",
|
|
|
|
|
"sandbox_summary",
|
|
|
|
|
] }
|
feat: add support for @ to do file search (#1401)
Introduces support for `@` to trigger a fuzzy-filename search in the
composer. Under the hood, this leverages
https://crates.io/crates/nucleo-matcher to do the fuzzy matching and
https://crates.io/crates/ignore to build up the list of file candidates
(so that it respects `.gitignore`).
For simplicity (at least for now), we do not do any caching between
searches like VS Code does for its file search:
https://github.com/microsoft/vscode/blob/1d89ed699b2e924d418c856318a3e12bca67ff3a/src/vs/workbench/services/search/node/rawSearchService.ts#L212-L218
Because we do not do any caching, I saw queries take up to three seconds
on large repositories with hundreds of thousands of files. To that end,
we do not perform searches synchronously on each keystroke, but instead
dispatch an event to do the search on a background thread that
asynchronously reports back to the UI when the results are available.
This is largely handled by the `FileSearchManager` introduced in this
PR, which also has logic for debouncing requests so there is at most one
search in flight at a time.
While we could potentially polish and tune this feature further, it may
already be overengineered for how it will be used, in practice, so we
can improve things going forward if it turns out that this is not "good
enough" in the wild.
Note this feature does not work like `@` in the TypeScript CLI, which
was more like directory-based tab completion. In the Rust CLI, `@`
triggers a full-repo fuzzy-filename search.
Fixes https://github.com/openai/codex/issues/1261.
2025-06-28 13:47:42 -07:00
|
|
|
codex-file-search = { path = "../file-search" }
|
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086)
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
2025-05-23 11:37:07 -07:00
|
|
|
codex-linux-sandbox = { path = "../linux-sandbox" }
|
feat: add support for login with ChatGPT (#1212)
This does not implement the full Login with ChatGPT experience, but it
should unblock people.
**What works**
* The `codex` multitool now has a `login` subcommand, so you can run
`codex login`, which should write `CODEX_HOME/auth.json` if you complete
the flow successfully. The TUI will now read the `OPENAI_API_KEY` from
`auth.json`.
* The TUI should refresh the token if it has expired and the necessary
information is in `auth.json`.
* There is a `LoginScreen` in the TUI that tells you to run `codex
login` if both (1) your model provider expects to use `OPENAI_API_KEY`
as its env var, and (2) `OPENAI_API_KEY` is not set.
**What does not work**
* The `LoginScreen` does not support the login flow from within the TUI.
Instead, it tells you to quit, run `codex login`, and then run `codex`
again.
* `codex exec` does read from `auth.json` yet, nor does it direct the
user to go through the login flow if `OPENAI_API_KEY` is not be found.
* The `maybeRedeemCredits()` function from `get-api-key.tsx` has not
been ported from TypeScript to `login_with_chatgpt.py` yet:
https://github.com/openai/codex/blob/a67a67f3258fc21e147b6786a143fe3e15e6d5ba/codex-cli/src/utils/get-api-key.tsx#L84-L89
**Implementation**
Currently, the OAuth flow requires running a local webserver on
`127.0.0.1:1455`. It seemed wasteful to incur the additional binary cost
of a webserver dependency in the Rust CLI just to support login, so
instead we implement this logic in Python, as Python has a `http.server`
module as part of its standard library. Specifically, we bundle the
contents of a single Python file as a string in the Rust CLI and then
use it to spawn a subprocess as `python3 -c
{{SOURCE_FOR_PYTHON_SERVER}}`.
As such, the most significant files in this PR are:
```
codex-rs/login/src/login_with_chatgpt.py
codex-rs/login/src/lib.rs
```
Now that the CLI may load `OPENAI_API_KEY` from the environment _or_
`CODEX_HOME/auth.json`, we need a new abstraction for reading/writing
this variable, so we introduce:
```
codex-rs/core/src/openai_api_key.rs
```
Note that `std::env::set_var()` is [rightfully] `unsafe` in Rust 2024,
so we use a LazyLock<RwLock<Option<String>>> to store `OPENAI_API_KEY`
so it is read in a thread-safe manner.
Ultimately, it should be possible to go through the entire login flow
from the TUI. This PR introduces a placeholder `LoginScreen` UI for that
right now, though the new `codex login` subcommand introduced in this PR
should be a viable workaround until the UI is ready.
**Testing**
Because the login flow is currently implemented in a standalone Python
file, you can test it without building any Rust code as follows:
```
rm -rf /tmp/codex_home && mkdir /tmp/codex_home
CODEX_HOME=/tmp/codex_home python3 codex-rs/login/src/login_with_chatgpt.py
```
For reference:
* the original TypeScript implementation was introduced in
https://github.com/openai/codex/pull/963
* support for redeeming credits was later added in
https://github.com/openai/codex/pull/974
2025-06-04 08:44:17 -07:00
|
|
|
codex-login = { path = "../login" }
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
color-eyre = "0.6.3"
|
2025-05-09 11:33:46 -07:00
|
|
|
crossterm = { version = "0.28.1", features = ["bracketed-paste"] }
|
fix: introduce ResponseInputItem::McpToolCallOutput variant (#1151)
The output of an MCP server tool call can be one of several types, but
to date, we treated all outputs as text by showing the serialized JSON
as the "tool output" in Codex:
https://github.com/openai/codex/blob/25a9949c49194d5a64de54a11bcc5b4724ac9bd5/codex-rs/mcp-types/src/lib.rs#L96-L101
This PR adds support for the `ImageContent` variant so we can now
display an image output from an MCP tool call.
In making this change, we introduce a new
`ResponseInputItem::McpToolCallOutput` variant so that we can work with
the `mcp_types::CallToolResult` directly when the function call is made
to an MCP server.
Though arguably the more significant change is the introduction of
`HistoryCell::CompletedMcpToolCallWithImageOutput`, which is a cell that
uses `ratatui_image` to render an image into the terminal. To support
this, we introduce `ImageRenderCache`, cache a
`ratatui_image::picker::Picker`, and `ensure_image_cache()` to cache the
appropriate scaled image data and dimensions based on the current
terminal size.
To test, I created a minimal `package.json`:
```json
{
"name": "kitty-mcp",
"version": "1.0.0",
"type": "module",
"description": "MCP that returns image of kitty",
"main": "index.js",
"dependencies": {
"@modelcontextprotocol/sdk": "^1.12.0"
}
}
```
with the following `index.js` to define the MCP server:
```js
#!/usr/bin/env node
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { readFile } from "node:fs/promises";
import { join } from "node:path";
const IMAGE_URI = "image://Ada.png";
const server = new McpServer({
name: "Demo",
version: "1.0.0",
});
server.tool(
"get-cat-image",
"If you need a cat image, this tool will provide one.",
async () => ({
content: [
{ type: "image", data: await getAdaPngBase64(), mimeType: "image/png" },
],
})
);
server.resource("Ada the Cat", IMAGE_URI, async (uri) => {
const base64Image = await getAdaPngBase64();
return {
contents: [
{
uri: uri.href,
mimeType: "image/png",
blob: base64Image,
},
],
};
});
async function getAdaPngBase64() {
const __dirname = new URL(".", import.meta.url).pathname;
// From https://github.com/benjajaja/ratatui-image/blob/9705ce2c59ec669abbce2924cbfd1f5ae22c9860/assets/Ada.png
const filePath = join(__dirname, "Ada.png");
const imageData = await readFile(filePath);
const base64Image = imageData.toString("base64");
return base64Image;
}
const transport = new StdioServerTransport();
await server.connect(transport);
```
With the local changes from this PR, I added the following to my
`config.toml`:
```toml
[mcp_servers.kitty]
command = "node"
args = ["/Users/mbolin/code/kitty-mcp/index.js"]
```
Running the TUI from source:
```
cargo run --bin codex -- --model o3 'I need a picture of a cat'
```
I get:
<img width="732" alt="image"
src="https://github.com/user-attachments/assets/bf80b721-9ca0-4d81-aec7-77d6899e2869"
/>
Now, that said, I have only tested in iTerm and there is definitely some
funny business with getting an accurate character-to-pixel ratio
(sometimes the `CompletedMcpToolCallWithImageOutput` thinks it needs 10
rows to render instead of 4), so there is still work to be done here.
2025-05-28 19:03:17 -07:00
|
|
|
image = { version = "^0.25.6", default-features = false, features = ["jpeg"] }
|
2025-05-16 11:33:08 -07:00
|
|
|
lazy_static = "1"
|
2025-05-06 16:12:15 -07:00
|
|
|
mcp-types = { path = "../mcp-types" }
|
2025-05-16 11:33:08 -07:00
|
|
|
path-clean = "1.0.1"
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
ratatui = { version = "0.29.0", features = [
|
|
|
|
|
"unstable-widget-ref",
|
|
|
|
|
"unstable-rendered-line-info",
|
|
|
|
|
] }
|
fix: introduce ResponseInputItem::McpToolCallOutput variant (#1151)
The output of an MCP server tool call can be one of several types, but
to date, we treated all outputs as text by showing the serialized JSON
as the "tool output" in Codex:
https://github.com/openai/codex/blob/25a9949c49194d5a64de54a11bcc5b4724ac9bd5/codex-rs/mcp-types/src/lib.rs#L96-L101
This PR adds support for the `ImageContent` variant so we can now
display an image output from an MCP tool call.
In making this change, we introduce a new
`ResponseInputItem::McpToolCallOutput` variant so that we can work with
the `mcp_types::CallToolResult` directly when the function call is made
to an MCP server.
Though arguably the more significant change is the introduction of
`HistoryCell::CompletedMcpToolCallWithImageOutput`, which is a cell that
uses `ratatui_image` to render an image into the terminal. To support
this, we introduce `ImageRenderCache`, cache a
`ratatui_image::picker::Picker`, and `ensure_image_cache()` to cache the
appropriate scaled image data and dimensions based on the current
terminal size.
To test, I created a minimal `package.json`:
```json
{
"name": "kitty-mcp",
"version": "1.0.0",
"type": "module",
"description": "MCP that returns image of kitty",
"main": "index.js",
"dependencies": {
"@modelcontextprotocol/sdk": "^1.12.0"
}
}
```
with the following `index.js` to define the MCP server:
```js
#!/usr/bin/env node
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { readFile } from "node:fs/promises";
import { join } from "node:path";
const IMAGE_URI = "image://Ada.png";
const server = new McpServer({
name: "Demo",
version: "1.0.0",
});
server.tool(
"get-cat-image",
"If you need a cat image, this tool will provide one.",
async () => ({
content: [
{ type: "image", data: await getAdaPngBase64(), mimeType: "image/png" },
],
})
);
server.resource("Ada the Cat", IMAGE_URI, async (uri) => {
const base64Image = await getAdaPngBase64();
return {
contents: [
{
uri: uri.href,
mimeType: "image/png",
blob: base64Image,
},
],
};
});
async function getAdaPngBase64() {
const __dirname = new URL(".", import.meta.url).pathname;
// From https://github.com/benjajaja/ratatui-image/blob/9705ce2c59ec669abbce2924cbfd1f5ae22c9860/assets/Ada.png
const filePath = join(__dirname, "Ada.png");
const imageData = await readFile(filePath);
const base64Image = imageData.toString("base64");
return base64Image;
}
const transport = new StdioServerTransport();
await server.connect(transport);
```
With the local changes from this PR, I added the following to my
`config.toml`:
```toml
[mcp_servers.kitty]
command = "node"
args = ["/Users/mbolin/code/kitty-mcp/index.js"]
```
Running the TUI from source:
```
cargo run --bin codex -- --model o3 'I need a picture of a cat'
```
I get:
<img width="732" alt="image"
src="https://github.com/user-attachments/assets/bf80b721-9ca0-4d81-aec7-77d6899e2869"
/>
Now, that said, I have only tested in iTerm and there is definitely some
funny business with getting an accurate character-to-pixel ratio
(sometimes the `CompletedMcpToolCallWithImageOutput` thinks it needs 10
rows to render instead of 4), so there is still work to be done here.
2025-05-28 19:03:17 -07:00
|
|
|
ratatui-image = "8.0.0"
|
2025-06-02 17:11:45 -07:00
|
|
|
regex-lite = "0.1"
|
2025-06-03 14:29:26 -07:00
|
|
|
serde_json = { version = "1", features = ["preserve_order"] }
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
shlex = "1.3.0"
|
feat: add support for commands in the Rust TUI (#935)
Introduces support for slash commands like in the TypeScript CLI. We do
not support the full set of commands yet, but the core abstraction is
there now.
In particular, we have a `SlashCommand` enum and due to thoughtful use
of the [strum](https://crates.io/crates/strum) crate, it requires
minimal boilerplate to add a new command to the list.
The key new piece of UI is `CommandPopup`, though the keyboard events
are still handled by `ChatComposer`. The behavior is roughly as follows:
* if the first character in the composer is `/`, the command popup is
displayed (if you really want to send a message to Codex that starts
with a `/`, simply put a space before the `/`)
* while the popup is displayed, up/down can be used to change the
selection of the popup
* if there is a selection, hitting tab completes the command, but does
not send it
* if there is a selection, hitting enter sends the command
* if the prefix of the composer matches a command, the command will be
visible in the popup so the user can see the description (commands could
take arguments, so additional text may appear after the command name
itself)
https://github.com/user-attachments/assets/39c3e6ee-eeb7-4ef7-a911-466d8184975f
Incidentally, Codex wrote almost all the code for this PR!
2025-05-14 12:55:49 -07:00
|
|
|
strum = "0.27.1"
|
|
|
|
|
strum_macros = "0.27.1"
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
tokio = { version = "1", features = [
|
|
|
|
|
"io-std",
|
|
|
|
|
"macros",
|
|
|
|
|
"process",
|
|
|
|
|
"rt-multi-thread",
|
|
|
|
|
"signal",
|
|
|
|
|
] }
|
|
|
|
|
tracing = { version = "0.1.41", features = ["log"] }
|
|
|
|
|
tracing-appender = "0.2.3"
|
|
|
|
|
tracing-subscriber = { version = "0.3.19", features = ["env-filter"] }
|
2025-07-10 20:08:16 +02:00
|
|
|
tui-input = "0.14.0"
|
2025-05-07 10:46:32 -07:00
|
|
|
tui-markdown = "0.3.3"
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
tui-textarea = "0.7.0"
|
2025-06-03 14:29:26 -07:00
|
|
|
unicode-segmentation = "1.12.0"
|
2025-05-16 11:33:08 -07:00
|
|
|
uuid = "1"
|
|
|
|
|
|
|
|
|
|
[dev-dependencies]
|
|
|
|
|
pretty_assertions = "1"
|