feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
use clap::Parser;
|
2025-10-18 22:13:53 -07:00
|
|
|
|
use clap::ValueHint;
|
2025-05-06 17:38:56 -07:00
|
|
|
|
use codex_common::ApprovalModeCliArg;
|
feat: add support for -c/--config to override individual config items (#1137)
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
2025-05-27 23:11:44 -07:00
|
|
|
|
use codex_common::CliConfigOverrides;
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
use std::path::PathBuf;
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Parser, Debug)]
|
|
|
|
|
|
#[command(version)]
|
|
|
|
|
|
pub struct Cli {
|
|
|
|
|
|
/// Optional user prompt to start the session.
|
2025-10-07 08:07:31 -07:00
|
|
|
|
#[arg(value_name = "PROMPT", value_hint = clap::ValueHint::Other)]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
pub prompt: Option<String>,
|
|
|
|
|
|
|
|
|
|
|
|
/// Optional image(s) to attach to the initial prompt.
|
|
|
|
|
|
#[arg(long = "image", short = 'i', value_name = "FILE", value_delimiter = ',', num_args = 1..)]
|
|
|
|
|
|
pub images: Vec<PathBuf>,
|
|
|
|
|
|
|
2025-09-14 19:33:19 -04:00
|
|
|
|
// Internal controls set by the top-level `codex resume` subcommand.
|
|
|
|
|
|
// These are not exposed as user flags on the base `codex` command.
|
|
|
|
|
|
#[clap(skip)]
|
|
|
|
|
|
pub resume_picker: bool,
|
|
|
|
|
|
|
|
|
|
|
|
#[clap(skip)]
|
|
|
|
|
|
pub resume_last: bool,
|
|
|
|
|
|
|
|
|
|
|
|
/// Internal: resume a specific recorded session by id (UUID). Set by the
|
|
|
|
|
|
/// top-level `codex resume <SESSION_ID>` wrapper; not exposed as a public flag.
|
|
|
|
|
|
#[clap(skip)]
|
|
|
|
|
|
pub resume_session_id: Option<String>,
|
2025-09-03 23:20:40 -07:00
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// Model the agent should use.
|
|
|
|
|
|
#[arg(long, short = 'm')]
|
|
|
|
|
|
pub model: Option<String>,
|
2025-05-13 16:52:52 -07:00
|
|
|
|
|
2025-08-05 11:31:11 -07:00
|
|
|
|
/// Convenience flag to select the local open source model provider.
|
|
|
|
|
|
/// Equivalent to -c model_provider=oss; verifies a local Ollama server is
|
|
|
|
|
|
/// running.
|
|
|
|
|
|
#[arg(long = "oss", default_value_t = false)]
|
|
|
|
|
|
pub oss: bool,
|
|
|
|
|
|
|
2025-05-13 16:52:52 -07:00
|
|
|
|
/// Configuration profile from config.toml to specify default options.
|
|
|
|
|
|
#[arg(long = "profile", short = 'p')]
|
|
|
|
|
|
pub config_profile: Option<String>,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
feat: add support for --sandbox flag (#1476)
On a high-level, we try to design `config.toml` so that you don't have
to "comment out a lot of stuff" when testing different options.
Previously, defining a sandbox policy was somewhat at odds with this
principle because you would define the policy as attributes of
`[sandbox]` like so:
```toml
[sandbox]
mode = "workspace-write"
writable_roots = [ "/tmp" ]
```
but if you wanted to temporarily change to a read-only sandbox, you
might feel compelled to modify your file to be:
```toml
[sandbox]
mode = "read-only"
# mode = "workspace-write"
# writable_roots = [ "/tmp" ]
```
Technically, commenting out `writable_roots` would not be strictly
necessary, as `mode = "read-only"` would ignore `writable_roots`, but
it's still a reasonable thing to do to keep things tidy.
Currently, the various values for `mode` do not support that many
attributes, so this is not that hard to maintain, but one could imagine
this becoming more complex in the future.
In this PR, we change Codex CLI so that it no longer recognizes
`[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`,
and `[sandbox_workspace_write]` is used to further configure the sandbox
when when `sandbox_mode = "workspace-write"` is used:
```toml
sandbox_mode = "workspace-write"
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
```
This feels a bit more future-proof in that it is less tedious to
configure different sandboxes:
```toml
sandbox_mode = "workspace-write"
[sandbox_read_only]
# read-only options here...
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
[sandbox_danger_full_access]
# danger-full-access options here...
```
In this scheme, you never need to comment out the configuration for an
individual sandbox type: you only need to redefine `sandbox_mode`.
Relatedly, previous to this change, a user had to do `-c
sandbox.mode=read-only` to change the mode on the command line. With
this change, things are arguably a bit cleaner because the equivalent
option is `-c sandbox_mode=read-only` (and now `-c
sandbox_workspace_write=...` can be set separately).
Though more importantly, we introduce the `-s/--sandbox` option to the
CLI, which maps directly to `sandbox_mode` in `config.toml`, making
config override behavior easier to reason about. Moreover, as you can
see in the updates to the various Markdown files, it is much easier to
explain how to configure sandboxing when things like `--sandbox
read-only` can be used as an example.
Relatedly, this cleanup also made it straightforward to add support for
a `sandbox` option for Codex when used as an MCP server (see the changes
to `mcp-server/src/codex_tool_config.rs`).
Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
|
|
|
|
/// Select the sandbox policy to use when executing model-generated shell
|
|
|
|
|
|
/// commands.
|
|
|
|
|
|
#[arg(long = "sandbox", short = 's')]
|
|
|
|
|
|
pub sandbox_mode: Option<codex_common::SandboxModeCliArg>,
|
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// Configure when the model requires human approval before executing a command.
|
2025-04-27 21:47:50 -07:00
|
|
|
|
#[arg(long = "ask-for-approval", short = 'a')]
|
|
|
|
|
|
pub approval_policy: Option<ApprovalModeCliArg>,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
feat: add support for --sandbox flag (#1476)
On a high-level, we try to design `config.toml` so that you don't have
to "comment out a lot of stuff" when testing different options.
Previously, defining a sandbox policy was somewhat at odds with this
principle because you would define the policy as attributes of
`[sandbox]` like so:
```toml
[sandbox]
mode = "workspace-write"
writable_roots = [ "/tmp" ]
```
but if you wanted to temporarily change to a read-only sandbox, you
might feel compelled to modify your file to be:
```toml
[sandbox]
mode = "read-only"
# mode = "workspace-write"
# writable_roots = [ "/tmp" ]
```
Technically, commenting out `writable_roots` would not be strictly
necessary, as `mode = "read-only"` would ignore `writable_roots`, but
it's still a reasonable thing to do to keep things tidy.
Currently, the various values for `mode` do not support that many
attributes, so this is not that hard to maintain, but one could imagine
this becoming more complex in the future.
In this PR, we change Codex CLI so that it no longer recognizes
`[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`,
and `[sandbox_workspace_write]` is used to further configure the sandbox
when when `sandbox_mode = "workspace-write"` is used:
```toml
sandbox_mode = "workspace-write"
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
```
This feels a bit more future-proof in that it is less tedious to
configure different sandboxes:
```toml
sandbox_mode = "workspace-write"
[sandbox_read_only]
# read-only options here...
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
[sandbox_danger_full_access]
# danger-full-access options here...
```
In this scheme, you never need to comment out the configuration for an
individual sandbox type: you only need to redefine `sandbox_mode`.
Relatedly, previous to this change, a user had to do `-c
sandbox.mode=read-only` to change the mode on the command line. With
this change, things are arguably a bit cleaner because the equivalent
option is `-c sandbox_mode=read-only` (and now `-c
sandbox_workspace_write=...` can be set separately).
Though more importantly, we introduce the `-s/--sandbox` option to the
CLI, which maps directly to `sandbox_mode` in `config.toml`, making
config override behavior easier to reason about. Moreover, as you can
see in the updates to the various Markdown files, it is much easier to
explain how to configure sandboxing when things like `--sandbox
read-only` can be used as an example.
Relatedly, this cleanup also made it straightforward to add support for
a `sandbox` option for Codex when used as an MCP server (see the changes
to `mcp-server/src/codex_tool_config.rs`).
Fixes https://github.com/openai/codex/issues/1248.
2025-07-07 22:31:30 -07:00
|
|
|
|
/// Convenience alias for low-friction sandboxed automatic execution (-a on-failure, --sandbox workspace-write).
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
#[arg(long = "full-auto", default_value_t = false)]
|
|
|
|
|
|
pub full_auto: bool,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-06-25 12:36:10 -07:00
|
|
|
|
/// Skip all confirmation prompts and execute commands without sandboxing.
|
|
|
|
|
|
/// EXTREMELY DANGEROUS. Intended solely for running in environments that are externally sandboxed.
|
|
|
|
|
|
#[arg(
|
|
|
|
|
|
long = "dangerously-bypass-approvals-and-sandbox",
|
2025-08-06 22:54:54 -07:00
|
|
|
|
alias = "yolo",
|
2025-06-25 12:36:10 -07:00
|
|
|
|
default_value_t = false,
|
|
|
|
|
|
conflicts_with_all = ["approval_policy", "full_auto"]
|
|
|
|
|
|
)]
|
|
|
|
|
|
pub dangerously_bypass_approvals_and_sandbox: bool,
|
|
|
|
|
|
|
2025-05-04 10:57:12 -07:00
|
|
|
|
/// Tell the agent to use the specified directory as its working root.
|
|
|
|
|
|
#[clap(long = "cd", short = 'C', value_name = "DIR")]
|
|
|
|
|
|
pub cwd: Option<PathBuf>,
|
|
|
|
|
|
|
2025-08-23 22:58:56 -07:00
|
|
|
|
/// Enable web search (off by default). When enabled, the native Responses `web_search` tool is available to the model (no per‑call approval).
|
|
|
|
|
|
#[arg(long = "search", default_value_t = false)]
|
|
|
|
|
|
pub web_search: bool,
|
|
|
|
|
|
|
2025-10-18 22:13:53 -07:00
|
|
|
|
/// Additional directories that should be writable alongside the primary workspace.
|
|
|
|
|
|
#[arg(long = "add-dir", value_name = "DIR", value_hint = ValueHint::DirPath)]
|
|
|
|
|
|
pub add_dir: Vec<PathBuf>,
|
|
|
|
|
|
|
feat: add support for -c/--config to override individual config items (#1137)
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
2025-05-27 23:11:44 -07:00
|
|
|
|
#[clap(skip)]
|
|
|
|
|
|
pub config_overrides: CliConfigOverrides,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
}
|