test: add integration test for MCP server (#1633)
This PR introduces a single integration test for `cargo mcp`, though it
also introduces a number of reusable components so that it should be
easier to introduce more integration tests going forward.
The new test is introduced in `codex-rs/mcp-server/tests/elicitation.rs`
and the reusable pieces are in `codex-rs/mcp-server/tests/common`.
The test itself verifies new functionality around elicitations
introduced in https://github.com/openai/codex/pull/1623 (and the fix
introduced in https://github.com/openai/codex/pull/1629) by doing the
following:
- starts a mock model provider with canned responses for
`/v1/chat/completions`
- starts the MCP server with a `config.toml` to use that model provider
(and `approval_policy = "untrusted"`)
- sends the `codex` tool call which causes the mock model provider to
request a shell call for `git init`
- the MCP server sends an elicitation to the client to approve the
request
- the client replies to the elicitation with `"approved"`
- the MCP server runs the command and re-samples the model, getting a
`"finish_reason": "stop"`
- in turn, the MCP server sends the final response to the original
`codex` tool call
- verifies that `git init` ran as expected
To test:
```
cargo test shell_command_approval_triggers_elicitation
```
In writing this test, I discovered that `ExecApprovalResponse` does not
conform to `ElicitResult`, so I added a TODO to fix that, since I think
that should be updated in a separate PR. As it stands, this PR does not
update any business logic, though it does make a number of members of
the `mcp-server` crate `pub` so they can be used in the test.
One additional learning from this PR is that
`std::process::Command::cargo_bin()` from the `assert_cmd` trait is only
available for `std::process::Command`, but we really want to use
`tokio::process::Command` so that everything is async and we can
leverage utilities like `tokio::time::timeout()`. The trick I came up
with was to use `cargo_bin()` to locate the program, and then to use
`std::process::Command::get_program()` when constructing the
`tokio::process::Command`.
2025-07-21 10:27:07 -07:00
|
|
|
mod mcp_process;
|
|
|
|
|
mod mock_model_server;
|
|
|
|
|
mod responses;
|
|
|
|
|
|
|
|
|
|
pub use mcp_process::McpProcess;
|
2025-08-18 00:29:18 -07:00
|
|
|
use mcp_types::JSONRPCResponse;
|
test: add integration test for MCP server (#1633)
This PR introduces a single integration test for `cargo mcp`, though it
also introduces a number of reusable components so that it should be
easier to introduce more integration tests going forward.
The new test is introduced in `codex-rs/mcp-server/tests/elicitation.rs`
and the reusable pieces are in `codex-rs/mcp-server/tests/common`.
The test itself verifies new functionality around elicitations
introduced in https://github.com/openai/codex/pull/1623 (and the fix
introduced in https://github.com/openai/codex/pull/1629) by doing the
following:
- starts a mock model provider with canned responses for
`/v1/chat/completions`
- starts the MCP server with a `config.toml` to use that model provider
(and `approval_policy = "untrusted"`)
- sends the `codex` tool call which causes the mock model provider to
request a shell call for `git init`
- the MCP server sends an elicitation to the client to approve the
request
- the client replies to the elicitation with `"approved"`
- the MCP server runs the command and re-samples the model, getting a
`"finish_reason": "stop"`
- in turn, the MCP server sends the final response to the original
`codex` tool call
- verifies that `git init` ran as expected
To test:
```
cargo test shell_command_approval_triggers_elicitation
```
In writing this test, I discovered that `ExecApprovalResponse` does not
conform to `ElicitResult`, so I added a TODO to fix that, since I think
that should be updated in a separate PR. As it stands, this PR does not
update any business logic, though it does make a number of members of
the `mcp-server` crate `pub` so they can be used in the test.
One additional learning from this PR is that
`std::process::Command::cargo_bin()` from the `assert_cmd` trait is only
available for `std::process::Command`, but we really want to use
`tokio::process::Command` so that everything is async and we can
leverage utilities like `tokio::time::timeout()`. The trick I came up
with was to use `cargo_bin()` to locate the program, and then to use
`std::process::Command::get_program()` when constructing the
`tokio::process::Command`.
2025-07-21 10:27:07 -07:00
|
|
|
pub use mock_model_server::create_mock_chat_completions_server;
|
2025-07-21 23:58:41 -07:00
|
|
|
pub use responses::create_apply_patch_sse_response;
|
test: add integration test for MCP server (#1633)
This PR introduces a single integration test for `cargo mcp`, though it
also introduces a number of reusable components so that it should be
easier to introduce more integration tests going forward.
The new test is introduced in `codex-rs/mcp-server/tests/elicitation.rs`
and the reusable pieces are in `codex-rs/mcp-server/tests/common`.
The test itself verifies new functionality around elicitations
introduced in https://github.com/openai/codex/pull/1623 (and the fix
introduced in https://github.com/openai/codex/pull/1629) by doing the
following:
- starts a mock model provider with canned responses for
`/v1/chat/completions`
- starts the MCP server with a `config.toml` to use that model provider
(and `approval_policy = "untrusted"`)
- sends the `codex` tool call which causes the mock model provider to
request a shell call for `git init`
- the MCP server sends an elicitation to the client to approve the
request
- the client replies to the elicitation with `"approved"`
- the MCP server runs the command and re-samples the model, getting a
`"finish_reason": "stop"`
- in turn, the MCP server sends the final response to the original
`codex` tool call
- verifies that `git init` ran as expected
To test:
```
cargo test shell_command_approval_triggers_elicitation
```
In writing this test, I discovered that `ExecApprovalResponse` does not
conform to `ElicitResult`, so I added a TODO to fix that, since I think
that should be updated in a separate PR. As it stands, this PR does not
update any business logic, though it does make a number of members of
the `mcp-server` crate `pub` so they can be used in the test.
One additional learning from this PR is that
`std::process::Command::cargo_bin()` from the `assert_cmd` trait is only
available for `std::process::Command`, but we really want to use
`tokio::process::Command` so that everything is async and we can
leverage utilities like `tokio::time::timeout()`. The trick I came up
with was to use `cargo_bin()` to locate the program, and then to use
`std::process::Command::get_program()` when constructing the
`tokio::process::Command`.
2025-07-21 10:27:07 -07:00
|
|
|
pub use responses::create_final_assistant_message_sse_response;
|
|
|
|
|
pub use responses::create_shell_sse_response;
|
2025-08-18 00:29:18 -07:00
|
|
|
use serde::de::DeserializeOwned;
|
|
|
|
|
|
|
|
|
|
pub fn to_response<T: DeserializeOwned>(response: JSONRPCResponse) -> anyhow::Result<T> {
|
|
|
|
|
let value = serde_json::to_value(response.result)?;
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
let llmx_response = serde_json::from_value(value)?;
|
|
|
|
|
Ok(llmx_response)
|
2025-08-18 00:29:18 -07:00
|
|
|
}
|