feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
[package]
|
2025-07-30 18:37:00 -07:00
|
|
|
edition = "2024"
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
name = "codex-cli"
|
2025-04-29 16:38:47 -07:00
|
|
|
version = { workspace = true }
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
|
|
|
[[bin]]
|
|
|
|
|
name = "codex"
|
|
|
|
|
path = "src/main.rs"
|
|
|
|
|
|
2025-04-29 19:21:26 -07:00
|
|
|
[lib]
|
|
|
|
|
name = "codex_cli"
|
|
|
|
|
path = "src/lib.rs"
|
|
|
|
|
|
2025-05-08 09:46:18 -07:00
|
|
|
[lints]
|
|
|
|
|
workspace = true
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
[dependencies]
|
2025-09-22 18:47:01 +02:00
|
|
|
anyhow = { workspace = true }
|
|
|
|
|
clap = { workspace = true, features = ["derive"] }
|
|
|
|
|
clap_complete = { workspace = true }
|
fix: separate `codex mcp` into `codex mcp-server` and `codex app-server` (#4471)
This is a very large PR with some non-backwards-compatible changes.
Historically, `codex mcp` (or `codex mcp serve`) started a JSON-RPC-ish
server that had two overlapping responsibilities:
- Running an MCP server, providing some basic tool calls.
- Running the app server used to power experiences such as the VS Code
extension.
This PR aims to separate these into distinct concepts:
- `codex mcp-server` for the MCP server
- `codex app-server` for the "application server"
Note `codex mcp` still exists because it already has its own subcommands
for MCP management (`list`, `add`, etc.)
The MCP logic continues to live in `codex-rs/mcp-server` whereas the
refactored app server logic is in the new `codex-rs/app-server` folder.
Note that most of the existing integration tests in
`codex-rs/mcp-server/tests/suite` were actually for the app server, so
all the tests have been moved with the exception of
`codex-rs/mcp-server/tests/suite/mod.rs`.
Because this is already a large diff, I tried not to change more than I
had to, so `codex-rs/app-server/tests/common/mcp_process.rs` still uses
the name `McpProcess` for now, but I will do some mechanical renamings
to things like `AppServer` in subsequent PRs.
While `mcp-server` and `app-server` share some overlapping functionality
(like reading streams of JSONL and dispatching based on message types)
and some differences (completely different message types), I ended up
doing a bit of copypasta between the two crates, as both have somewhat
similar `message_processor.rs` and `outgoing_message.rs` files for now,
though I expect them to diverge more in the near future.
One material change is that of the initialize handshake for `codex
app-server`, as we no longer use the MCP types for that handshake.
Instead, we update `codex-rs/protocol/src/mcp_protocol.rs` to add an
`Initialize` variant to `ClientRequest`, which takes the `ClientInfo`
object we need to update the `USER_AGENT_SUFFIX` in
`codex-rs/app-server/src/message_processor.rs`.
One other material change is in
`codex-rs/app-server/src/codex_message_processor.rs` where I eliminated
a use of the `send_event_as_notification()` method I am generally trying
to deprecate (because it blindly maps an `EventMsg` into a
`JSONNotification`) in favor of `send_server_notification()`, which
takes a `ServerNotification`, as that is intended to be a custom enum of
all notification types supported by the app server. So to make this
update, I had to introduce a new variant of `ServerNotification`,
`SessionConfigured`, which is a non-backwards compatible change with the
old `codex mcp`, and clients will have to be updated after the next
release that contains this PR. Note that
`codex-rs/app-server/tests/suite/list_resume.rs` also had to be update
to reflect this change.
I introduced `codex-rs/utils/json-to-toml/src/lib.rs` as a small utility
crate to avoid some of the copying between `mcp-server` and
`app-server`.
2025-09-30 00:06:18 -07:00
|
|
|
codex-app-server = { workspace = true }
|
2025-09-22 18:47:01 +02:00
|
|
|
codex-arg0 = { workspace = true }
|
|
|
|
|
codex-chatgpt = { workspace = true }
|
|
|
|
|
codex-common = { workspace = true, features = ["cli"] }
|
|
|
|
|
codex-core = { workspace = true }
|
|
|
|
|
codex-exec = { workspace = true }
|
|
|
|
|
codex-login = { workspace = true }
|
|
|
|
|
codex-mcp-server = { workspace = true }
|
2025-09-28 14:35:14 -07:00
|
|
|
codex-process-hardening = { workspace = true }
|
2025-09-22 18:47:01 +02:00
|
|
|
codex-protocol = { workspace = true }
|
fix: remove mcp-types from app server protocol (#4537)
We continue the separation between `codex app-server` and `codex
mcp-server`.
In particular, we introduce a new crate, `codex-app-server-protocol`,
and migrate `codex-rs/protocol/src/mcp_protocol.rs` into it, renaming it
`codex-rs/app-server-protocol/src/protocol.rs`.
Because `ConversationId` was defined in `mcp_protocol.rs`, we move it
into its own file, `codex-rs/protocol/src/conversation_id.rs`, and
because it is referenced in a ton of places, we have to touch a lot of
files as part of this PR.
We also decide to get away from proper JSON-RPC 2.0 semantics, so we
also introduce `codex-rs/app-server-protocol/src/jsonrpc_lite.rs`, which
is basically the same `JSONRPCMessage` type defined in `mcp-types`
except with all of the `"jsonrpc": "2.0"` removed.
Getting rid of `"jsonrpc": "2.0"` makes our serialization logic
considerably simpler, as we can lean heavier on serde to serialize
directly into the wire format that we use now.
2025-09-30 19:16:26 -07:00
|
|
|
codex-app-server-protocol = { workspace = true }
|
2025-09-22 15:24:31 -07:00
|
|
|
codex-protocol-ts = { workspace = true }
|
2025-09-30 03:10:33 -07:00
|
|
|
codex-responses-api-proxy = { workspace = true }
|
2025-09-22 18:47:01 +02:00
|
|
|
codex-tui = { workspace = true }
|
2025-09-30 03:10:33 -07:00
|
|
|
codex-cloud-tasks = { path = "../cloud-tasks" }
|
2025-09-25 10:02:28 -07:00
|
|
|
ctor = { workspace = true }
|
2025-09-22 15:24:31 -07:00
|
|
|
owo-colors = { workspace = true }
|
2025-09-22 18:47:01 +02:00
|
|
|
serde_json = { workspace = true }
|
2025-09-22 15:24:31 -07:00
|
|
|
supports-color = { workspace = true }
|
2025-09-22 18:47:01 +02:00
|
|
|
tokio = { workspace = true, features = [
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
"io-std",
|
|
|
|
|
"macros",
|
|
|
|
|
"process",
|
|
|
|
|
"rt-multi-thread",
|
|
|
|
|
"signal",
|
|
|
|
|
] }
|
2025-09-14 21:30:56 -07:00
|
|
|
|
|
|
|
|
[dev-dependencies]
|
2025-09-22 18:47:01 +02:00
|
|
|
assert_cmd = { workspace = true }
|
|
|
|
|
predicates = { workspace = true }
|
|
|
|
|
pretty_assertions = { workspace = true }
|
|
|
|
|
tempfile = { workspace = true }
|