Files
llmx/codex-rs/arg0/src/lib.rs

90 lines
3.4 KiB
Rust
Raw Normal View History

use std::future::Future;
use std::path::Path;
use std::path::PathBuf;
/// While we want to deploy the Codex CLI as a single executable for simplicity,
/// we also want to expose some of its functionality as distinct CLIs, so we use
/// the "arg0 trick" to determine which CLI to dispatch. This effectively allows
/// us to simulate deploying multiple executables as a single binary on Mac and
/// Linux (but not Windows).
///
/// When the current executable is invoked through the hard-link or alias named
/// `codex-linux-sandbox` we *directly* execute
/// [`codex_linux_sandbox::run_main`] (which never returns). Otherwise we:
///
/// 1. Use [`dotenvy::from_path`] and [`dotenvy::dotenv`] to modify the
/// environment before creating any threads.
/// 2. Construct a Tokio multi-thread runtime.
/// 3. Derive the path to the current executable (so children can re-invoke the
/// sandbox) when running on Linux.
/// 4. Execute the provided async `main_fn` inside that runtime, forwarding any
/// error. Note that `main_fn` receives `codex_linux_sandbox_exe:
/// Option<PathBuf>`, as an argument, which is generally needed as part of
/// constructing [`codex_core::config::Config`].
///
/// This function should be used to wrap any `main()` function in binary crates
/// in this workspace that depends on these helper CLIs.
pub fn arg0_dispatch_or_else<F, Fut>(main_fn: F) -> anyhow::Result<()>
where
F: FnOnce(Option<PathBuf>) -> Fut,
Fut: Future<Output = anyhow::Result<()>>,
{
// Determine if we were invoked via the special alias.
fix: support special --codex-run-as-apply-patch arg (#1702) This introduces some special behavior to the CLIs that are using the `codex-arg0` crate where if `arg1` is `--codex-run-as-apply-patch`, then it will run as if `apply_patch arg2` were invoked. This is important because it means we can do things like: ``` SANDBOX_TYPE=landlock # or seatbelt for macOS codex debug "${SANDBOX_TYPE}" -- codex --codex-run-as-apply-patch PATCH ``` which gives us a way to run `apply_patch` while ensuring it adheres to the sandbox the user specified. While it would be nice to use the `arg0` trick like we are currently doing for `codex-linux-sandbox`, there is no way to specify the `arg0` for the underlying command when running under `/usr/bin/sandbox-exec`, so it will not work for us in this case. Admittedly, we could have also supported this via a custom environment variable (e.g., `CODEX_ARG0`), but since environment variables are inherited by child processes, that seemed like a potentially leakier abstraction. This change, as well as our existing reliance on checking `arg0`, place additional requirements on those who include `codex-core`. Its `README.md` has been updated to reflect this. While we could have just added an `apply-patch` subcommand to the `codex` multitool CLI, that would not be sufficient for the standalone `codex-exec` CLI, which is something that we distribute as part of our GitHub releases for those who know they will not be using the TUI and therefore prefer to use a slightly smaller executable: https://github.com/openai/codex/releases/tag/rust-v0.10.0 To that end, this PR adds an integration test to ensure that the `--codex-run-as-apply-patch` option works with the standalone `codex-exec` CLI. --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/openai/codex/pull/1702). * #1705 * #1703 * __->__ #1702 * #1698 * #1697
2025-07-28 09:26:44 -07:00
let mut args = std::env::args_os();
let argv0 = args.next().unwrap_or_default();
let exe_name = Path::new(&argv0)
.file_name()
.and_then(|s| s.to_str())
.unwrap_or("");
if exe_name == "codex-linux-sandbox" {
// Safety: [`run_main`] never returns.
codex_linux_sandbox::run_main();
}
fix: support special --codex-run-as-apply-patch arg (#1702) This introduces some special behavior to the CLIs that are using the `codex-arg0` crate where if `arg1` is `--codex-run-as-apply-patch`, then it will run as if `apply_patch arg2` were invoked. This is important because it means we can do things like: ``` SANDBOX_TYPE=landlock # or seatbelt for macOS codex debug "${SANDBOX_TYPE}" -- codex --codex-run-as-apply-patch PATCH ``` which gives us a way to run `apply_patch` while ensuring it adheres to the sandbox the user specified. While it would be nice to use the `arg0` trick like we are currently doing for `codex-linux-sandbox`, there is no way to specify the `arg0` for the underlying command when running under `/usr/bin/sandbox-exec`, so it will not work for us in this case. Admittedly, we could have also supported this via a custom environment variable (e.g., `CODEX_ARG0`), but since environment variables are inherited by child processes, that seemed like a potentially leakier abstraction. This change, as well as our existing reliance on checking `arg0`, place additional requirements on those who include `codex-core`. Its `README.md` has been updated to reflect this. While we could have just added an `apply-patch` subcommand to the `codex` multitool CLI, that would not be sufficient for the standalone `codex-exec` CLI, which is something that we distribute as part of our GitHub releases for those who know they will not be using the TUI and therefore prefer to use a slightly smaller executable: https://github.com/openai/codex/releases/tag/rust-v0.10.0 To that end, this PR adds an integration test to ensure that the `--codex-run-as-apply-patch` option works with the standalone `codex-exec` CLI. --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/openai/codex/pull/1702). * #1705 * #1703 * __->__ #1702 * #1698 * #1697
2025-07-28 09:26:44 -07:00
let argv1 = args.next().unwrap_or_default();
if argv1 == "--codex-run-as-apply-patch" {
let patch_arg = args.next().and_then(|s| s.to_str().map(|s| s.to_owned()));
let exit_code = match patch_arg {
Some(patch_arg) => {
let mut stdout = std::io::stdout();
let mut stderr = std::io::stderr();
match codex_apply_patch::apply_patch(&patch_arg, &mut stdout, &mut stderr) {
Ok(()) => 0,
Err(_) => 1,
}
}
None => {
eprintln!("Error: --codex-run-as-apply-patch requires a UTF-8 PATCH argument.");
1
}
};
std::process::exit(exit_code);
}
// This modifies the environment, which is not thread-safe, so do this
// before creating any threads/the Tokio runtime.
load_dotenv();
// Regular invocation create a Tokio runtime and execute the provided
// async entry-point.
let runtime = tokio::runtime::Runtime::new()?;
runtime.block_on(async move {
let codex_linux_sandbox_exe: Option<PathBuf> = if cfg!(target_os = "linux") {
std::env::current_exe().ok()
} else {
None
};
main_fn(codex_linux_sandbox_exe).await
})
}
/// Load env vars from ~/.codex/.env and `$(pwd)/.env`.
fn load_dotenv() {
if let Ok(codex_home) = codex_core::config::find_codex_home() {
dotenvy::from_path(codex_home.join(".env")).ok();
}
dotenvy::dotenv().ok();
}