2025-06-26 14:40:42 -04:00
use std ::borrow ::Cow ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use std ::collections ::HashMap ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
use std ::fmt ::Debug ;
2025-09-18 14:37:06 -07:00
use std ::path ::Path ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use std ::path ::PathBuf ;
use std ::sync ::Arc ;
2025-05-07 16:33:28 -07:00
use std ::sync ::atomic ::AtomicU64 ;
2025-05-07 12:56:38 -07:00
use std ::time ::Duration ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
2025-09-02 18:36:19 -07:00
use crate ::AuthManager ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
use crate ::client_common ::REVIEW_PROMPT ;
2025-09-03 21:47:00 -07:00
use crate ::event_mapping ::map_response_item_to_event_messages ;
2025-09-24 10:27:35 -07:00
use crate ::function_tool ::FunctionCallError ;
2025-09-16 18:43:32 -07:00
use crate ::review_format ::format_review_findings_block ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
use crate ::terminal ;
2025-09-23 07:25:46 -07:00
use crate ::user_notification ::UserNotifier ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use async_channel ::Receiver ;
use async_channel ::Sender ;
fix: ensure apply_patch resolves relative paths against workdir or project cwd (#810)
https://github.com/openai/codex/pull/800 kicked off some work to be more
disciplined about honoring the `cwd` param passed in rather than
assuming `std::env::current_dir()` as the `cwd`. As part of this, we
need to ensure `apply_patch` calls honor the appropriate `cwd` as well,
which is significant if the paths in the `apply_patch` arg are not
absolute paths themselves. Failing that:
- The `apply_patch` function call can contain an optional`workdir`
param, so:
- If specified and is an absolute path, it should be used to resolve
relative paths
- If specified and is a relative path, should be resolved against
`Config.cwd` and then any relative paths will be resolved against the
result
- If `workdir` is not specified on the function call, relative paths
should be resolved against `Config.cwd`
Note that we had a similar issue in the TypeScript CLI that was fixed in
https://github.com/openai/codex/pull/556.
As part of the fix, this PR introduces `ApplyPatchAction` so clients can
deal with that instead of the raw `HashMap<PathBuf,
ApplyPatchFileChange>`. This enables us to enforce, by construction,
that all paths contained in the `ApplyPatchAction` are absolute paths.
2025-05-04 12:32:51 -07:00
use codex_apply_patch ::ApplyPatchAction ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use codex_apply_patch ::MaybeApplyPatchVerified ;
2025-05-07 08:37:48 -07:00
use codex_apply_patch ::maybe_parse_apply_patch_verified ;
2025-09-07 20:22:25 -07:00
use codex_protocol ::mcp_protocol ::ConversationId ;
2025-09-10 17:42:54 -07:00
use codex_protocol ::protocol ::ConversationPathResponseEvent ;
2025-09-14 17:34:33 -07:00
use codex_protocol ::protocol ::ExitedReviewModeEvent ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
use codex_protocol ::protocol ::ReviewRequest ;
2025-09-10 10:17:24 -07:00
use codex_protocol ::protocol ::RolloutItem ;
2025-08-27 00:04:21 -07:00
use codex_protocol ::protocol ::TaskStartedEvent ;
2025-08-17 21:40:31 -07:00
use codex_protocol ::protocol ::TurnAbortReason ;
2025-09-11 11:08:51 -07:00
use codex_protocol ::protocol ::TurnContextItem ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use futures ::prelude ::* ;
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
use mcp_types ::CallToolResult ;
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
use serde ::Deserialize ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use serde ::Serialize ;
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
use serde_json ;
2025-09-23 13:59:16 -07:00
use serde_json ::Value ;
2025-09-18 18:21:52 +01:00
use tokio ::sync ::Mutex ;
2025-05-07 08:37:48 -07:00
use tokio ::sync ::oneshot ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use tracing ::debug ;
2025-05-04 10:57:12 -07:00
use tracing ::error ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use tracing ::info ;
use tracing ::trace ;
use tracing ::warn ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
use crate ::ModelProviderInfo ;
fix: tighten up checks against writable folders for SandboxPolicy (#2338)
I was looking at the implementation of `Session::get_writable_roots()`,
which did not seem right, as it was a copy of writable roots, which is
not guaranteed to be in sync with the `sandbox_policy` field.
I looked at who was calling `get_writable_roots()` and its only call
site was `apply_patch()` in `codex-rs/core/src/apply_patch.rs`, which
took the roots and forwarded them to `assess_patch_safety()` in
`safety.rs`. I updated `assess_patch_safety()` to take `sandbox_policy:
&SandboxPolicy` instead of `writable_roots: &[PathBuf]` (and replaced
`Session::get_writable_roots()` with `Session::get_sandbox_policy()`).
Within `safety.rs`, it was fairly easy to update
`is_write_patch_constrained_to_writable_paths()` to work with
`SandboxPolicy`, and in particular, it is far more accurate because, for
better or worse, `SandboxPolicy::get_writable_roots_with_cwd()` _returns
an empty vec_ for `SandboxPolicy::DangerFullAccess`, suggesting that
_nothing_ is writable when in reality _everything_ is writable. With
this PR, `is_write_patch_constrained_to_writable_paths()` now does the
right thing for each variant of `SandboxPolicy`.
I thought this would be the end of the story, but it turned out that
`test_writable_roots_constraint()` in `safety.rs` needed to be updated,
as well. In particular, the test was writing to
`std::env::current_dir()` instead of a `TempDir`, which I suspect was a
holdover from earlier when `SandboxPolicy::WorkspaceWrite` would always
make `TMPDIR` writable on macOS, which made it hard to write tests to
verify `SandboxPolicy` in `TMPDIR`. Fortunately, we now have
`exclude_tmpdir_env_var` as an option on
`SandboxPolicy::WorkspaceWrite`, so I was able to update the test to
preserve the existing behavior, but to no longer write to
`std::env::current_dir()`.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2338).
* #2345
* #2329
* #2343
* #2340
* __->__ #2338
2025-08-15 09:06:15 -07:00
use crate ::apply_patch ;
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
use crate ::apply_patch ::ApplyPatchExec ;
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
use crate ::apply_patch ::CODEX_APPLY_PATCH_ARG1 ;
use crate ::apply_patch ::InternalApplyPatchInvocation ;
2025-07-28 09:51:22 -07:00
use crate ::apply_patch ::convert_apply_patch_to_protocol ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::client ::ModelClient ;
2025-05-08 21:46:06 -07:00
use crate ::client_common ::Prompt ;
use crate ::client_common ::ResponseEvent ;
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
use crate ::config ::Config ;
feat: introduce support for shell_environment_policy in config.toml (#1061)
To date, when handling `shell` and `local_shell` tool calls, we were
spawning new processes using the environment inherited from the Codex
process itself. This means that the sensitive `OPENAI_API_KEY` that
Codex needs to talk to OpenAI models was made available to everything
run by `shell` and `local_shell`. While there are cases where that might
be useful, it does not seem like a good default.
This PR introduces a complex `shell_environment_policy` config option to
control the `env` used with these tool calls. It is inevitably a bit
complex so that it is possible to override individual components of the
policy so without having to restate the entire thing.
Details are in the updated `README.md` in this PR, but here is the
relevant bit that explains the individual fields of
`shell_environment_policy`:
| Field | Type | Default | Description |
| ------------------------- | -------------------------- | ------- |
-----------------------------------------------------------------------------------------------------------------------------------------------
|
| `inherit` | string | `core` | Starting template for the
environment:<br>`core` (`HOME`, `PATH`, `USER`, …), `all` (clone full
parent env), or `none` (start empty). |
| `ignore_default_excludes` | boolean | `false` | When `false`, Codex
removes any var whose **name** contains `KEY`, `SECRET`, or `TOKEN`
(case-insensitive) before other rules run. |
| `exclude` | array<string> | `[]` | Case-insensitive glob
patterns to drop after the default filter.<br>Examples: `"AWS_*"`,
`"AZURE_*"`. |
| `set` | table<string,string> | `{}` | Explicit key/value
overrides or additions – always win over inherited values. |
| `include_only` | array<string> | `[]` | If non-empty, a
whitelist of patterns; only variables that match _one_ pattern survive
the final step. (Generally used with `inherit = "all"`.) |
In particular, note that the default is `inherit = "core"`, so:
* if you have extra env variables that you want to inherit from the
parent process, use `inherit = "all"` and then specify `include_only`
* if you have extra env variables where you want to hardcode the values,
the default `inherit = "core"` will work fine, but then you need to
specify `set`
This configuration is not battle-tested, so we will probably still have
to play with it a bit. `core/src/exec_env.rs` has the critical business
logic as well as unit tests.
Though if nothing else, previous to this change:
```
$ cargo run --bin codex -- debug seatbelt -- printenv OPENAI_API_KEY
# ...prints OPENAI_API_KEY...
```
But after this change it does not print anything (as desired).
One final thing to call out about this PR is that the
`configure_command!` macro we use in `core/src/exec.rs` has to do some
complex logic with respect to how it builds up the `env` for the process
being spawned under Landlock/seccomp. Specifically, doing
`cmd.env_clear()` followed by `cmd.envs(&$env_map)` (which is arguably
the most intuitive way to do it) caused the Landlock unit tests to fail
because the processes spawned by the unit tests started failing in
unexpected ways! If we forgo `env_clear()` in favor of updating env vars
one at a time, the tests still pass. The comment in the code talks about
this a bit, and while I would like to investigate this more, I need to
move on for the moment, but I do plan to come back to it to fully
understand what is going on. For example, this suggests that we might
not be able to spawn a C program that calls `env_clear()`, which would
be...weird. We may still have to fiddle with our Landlock config if that
is the case.
2025-05-22 09:51:19 -07:00
use crate ::config_types ::ShellEnvironmentPolicy ;
2025-05-08 21:46:06 -07:00
use crate ::conversation_history ::ConversationHistory ;
2025-08-14 14:51:13 -04:00
use crate ::environment_context ::EnvironmentContext ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::error ::CodexErr ;
use crate ::error ::Result as CodexResult ;
2025-05-16 14:17:10 -07:00
use crate ::error ::SandboxErr ;
2025-08-06 23:25:56 -07:00
use crate ::error ::get_error_message_ui ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::exec ::ExecParams ;
use crate ::exec ::ExecToolCallOutput ;
use crate ::exec ::SandboxType ;
2025-08-01 13:04:34 -07:00
use crate ::exec ::StdoutStream ;
2025-08-11 11:52:05 -07:00
use crate ::exec ::StreamOutput ;
2025-05-07 08:37:48 -07:00
use crate ::exec ::process_exec_tool_call ;
2025-08-22 18:10:55 -07:00
use crate ::exec_command ::EXEC_COMMAND_TOOL_NAME ;
use crate ::exec_command ::ExecCommandParams ;
2025-08-24 22:52:49 -07:00
use crate ::exec_command ::ExecSessionManager ;
2025-08-22 18:10:55 -07:00
use crate ::exec_command ::WRITE_STDIN_TOOL_NAME ;
use crate ::exec_command ::WriteStdinParams ;
feat: introduce support for shell_environment_policy in config.toml (#1061)
To date, when handling `shell` and `local_shell` tool calls, we were
spawning new processes using the environment inherited from the Codex
process itself. This means that the sensitive `OPENAI_API_KEY` that
Codex needs to talk to OpenAI models was made available to everything
run by `shell` and `local_shell`. While there are cases where that might
be useful, it does not seem like a good default.
This PR introduces a complex `shell_environment_policy` config option to
control the `env` used with these tool calls. It is inevitably a bit
complex so that it is possible to override individual components of the
policy so without having to restate the entire thing.
Details are in the updated `README.md` in this PR, but here is the
relevant bit that explains the individual fields of
`shell_environment_policy`:
| Field | Type | Default | Description |
| ------------------------- | -------------------------- | ------- |
-----------------------------------------------------------------------------------------------------------------------------------------------
|
| `inherit` | string | `core` | Starting template for the
environment:<br>`core` (`HOME`, `PATH`, `USER`, …), `all` (clone full
parent env), or `none` (start empty). |
| `ignore_default_excludes` | boolean | `false` | When `false`, Codex
removes any var whose **name** contains `KEY`, `SECRET`, or `TOKEN`
(case-insensitive) before other rules run. |
| `exclude` | array<string> | `[]` | Case-insensitive glob
patterns to drop after the default filter.<br>Examples: `"AWS_*"`,
`"AZURE_*"`. |
| `set` | table<string,string> | `{}` | Explicit key/value
overrides or additions – always win over inherited values. |
| `include_only` | array<string> | `[]` | If non-empty, a
whitelist of patterns; only variables that match _one_ pattern survive
the final step. (Generally used with `inherit = "all"`.) |
In particular, note that the default is `inherit = "core"`, so:
* if you have extra env variables that you want to inherit from the
parent process, use `inherit = "all"` and then specify `include_only`
* if you have extra env variables where you want to hardcode the values,
the default `inherit = "core"` will work fine, but then you need to
specify `set`
This configuration is not battle-tested, so we will probably still have
to play with it a bit. `core/src/exec_env.rs` has the critical business
logic as well as unit tests.
Though if nothing else, previous to this change:
```
$ cargo run --bin codex -- debug seatbelt -- printenv OPENAI_API_KEY
# ...prints OPENAI_API_KEY...
```
But after this change it does not print anything (as desired).
One final thing to call out about this PR is that the
`configure_command!` macro we use in `core/src/exec.rs` has to do some
complex logic with respect to how it builds up the `env` for the process
being spawned under Landlock/seccomp. Specifically, doing
`cmd.env_clear()` followed by `cmd.envs(&$env_map)` (which is arguably
the most intuitive way to do it) caused the Landlock unit tests to fail
because the processes spawned by the unit tests started failing in
unexpected ways! If we forgo `env_clear()` in favor of updating env vars
one at a time, the tests still pass. The comment in the code talks about
this a bit, and while I would like to investigate this more, I need to
move on for the moment, but I do plan to come back to it to fully
understand what is going on. For example, this suggests that we might
not be able to spawn a C program that calls `env_clear()`, which would
be...weird. We may still have to fiddle with our Landlock config if that
is the case.
2025-05-22 09:51:19 -07:00
use crate ::exec_env ::create_env ;
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
use crate ::mcp_connection_manager ::McpConnectionManager ;
use crate ::mcp_tool_call ::handle_mcp_tool_call ;
2025-08-15 09:56:05 -07:00
use crate ::model_family ::find_family_for_model ;
2025-08-27 00:04:21 -07:00
use crate ::openai_model_info ::get_model_info ;
2025-08-15 11:55:53 -04:00
use crate ::openai_tools ::ApplyPatchToolArgs ;
2025-08-05 19:27:52 -07:00
use crate ::openai_tools ::ToolsConfig ;
2025-08-24 22:43:42 -07:00
use crate ::openai_tools ::ToolsConfigParams ;
2025-08-05 19:27:52 -07:00
use crate ::openai_tools ::get_openai_tools ;
2025-08-11 11:26:15 -07:00
use crate ::parse_command ::parse_command ;
2025-07-29 11:22:02 -07:00
use crate ::plan_tool ::handle_update_plan ;
2025-06-03 09:40:19 -07:00
use crate ::project_doc ::get_user_instructions ;
2025-07-16 15:11:18 -07:00
use crate ::protocol ::AgentMessageDeltaEvent ;
use crate ::protocol ::AgentReasoningDeltaEvent ;
2025-08-05 01:56:13 -07:00
use crate ::protocol ::AgentReasoningRawContentDeltaEvent ;
2025-08-12 17:37:28 -07:00
use crate ::protocol ::AgentReasoningSectionBreakEvent ;
2025-05-13 20:44:42 -07:00
use crate ::protocol ::ApplyPatchApprovalRequestEvent ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::protocol ::AskForApproval ;
2025-05-13 20:44:42 -07:00
use crate ::protocol ::BackgroundEventEvent ;
use crate ::protocol ::ErrorEvent ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::protocol ::Event ;
use crate ::protocol ::EventMsg ;
2025-05-13 20:44:42 -07:00
use crate ::protocol ::ExecApprovalRequestEvent ;
use crate ::protocol ::ExecCommandBeginEvent ;
use crate ::protocol ::ExecCommandEndEvent ;
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
use crate ::protocol ::FileChange ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::protocol ::InputItem ;
2025-08-28 19:16:39 -07:00
use crate ::protocol ::ListCustomPromptsResponseEvent ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::protocol ::Op ;
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
use crate ::protocol ::PatchApplyBeginEvent ;
use crate ::protocol ::PatchApplyEndEvent ;
2025-09-23 15:56:34 -07:00
use crate ::protocol ::RateLimitSnapshot ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::protocol ::ReviewDecision ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
use crate ::protocol ::ReviewOutputEvent ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::protocol ::SandboxPolicy ;
2025-05-13 19:22:16 -07:00
use crate ::protocol ::SessionConfiguredEvent ;
2025-08-21 01:15:24 -07:00
use crate ::protocol ::StreamErrorEvent ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::protocol ::Submission ;
2025-09-20 21:26:16 -07:00
use crate ::protocol ::TokenCountEvent ;
2025-09-12 13:07:10 -07:00
use crate ::protocol ::TokenUsage ;
2025-08-04 08:57:04 -07:00
use crate ::protocol ::TurnDiffEvent ;
2025-08-23 22:58:56 -07:00
use crate ::protocol ::WebSearchBeginEvent ;
2025-05-07 13:49:15 -07:00
use crate ::rollout ::RolloutRecorder ;
2025-09-08 14:54:47 -07:00
use crate ::rollout ::RolloutRecorderParams ;
2025-05-07 08:37:48 -07:00
use crate ::safety ::SafetyCheck ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::safety ::assess_command_safety ;
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
use crate ::safety ::assess_safety_for_untrusted_command ;
2025-07-25 11:45:23 -07:00
use crate ::shell ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
use crate ::state ::ActiveTurn ;
use crate ::state ::SessionServices ;
2025-09-26 15:49:08 +02:00
use crate ::tasks ::CompactTask ;
use crate ::tasks ::RegularTask ;
use crate ::tasks ::ReviewTask ;
2025-08-04 08:57:04 -07:00
use crate ::turn_diff_tracker ::TurnDiffTracker ;
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
use crate ::unified_exec ::UnifiedExecSessionManager ;
2025-09-03 22:34:50 -07:00
use crate ::user_instructions ::UserInstructions ;
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
use crate ::user_notification ::UserNotification ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
use crate ::util ::backoff ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
use codex_otel ::otel_event_manager ::OtelEventManager ;
use codex_otel ::otel_event_manager ::ToolDecisionSource ;
2025-08-18 11:50:17 -07:00
use codex_protocol ::config_types ::ReasoningEffort as ReasoningEffortConfig ;
use codex_protocol ::config_types ::ReasoningSummary as ReasoningSummaryConfig ;
2025-08-28 19:16:39 -07:00
use codex_protocol ::custom_prompts ::CustomPrompt ;
2025-08-22 15:18:54 -07:00
use codex_protocol ::models ::ContentItem ;
use codex_protocol ::models ::FunctionCallOutputPayload ;
use codex_protocol ::models ::LocalShellAction ;
use codex_protocol ::models ::ResponseInputItem ;
use codex_protocol ::models ::ResponseItem ;
use codex_protocol ::models ::ShellToolCallParams ;
2025-09-10 10:17:24 -07:00
use codex_protocol ::protocol ::InitialHistory ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
2025-09-18 13:55:53 -07:00
pub mod compact ;
2025-09-14 09:23:31 -04:00
use self ::compact ::build_compacted_history ;
use self ::compact ::collect_user_messages ;
2025-09-12 13:07:10 -07:00
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
/// The high-level interface to the Codex system.
/// It operates as a queue pair where you send submissions and receive events.
pub struct Codex {
2025-05-07 16:33:28 -07:00
next_id : AtomicU64 ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
tx_sub : Sender < Submission > ,
rx_event : Receiver < Event > ,
}
2025-07-27 20:01:35 -07:00
/// Wrapper returned by [`Codex::spawn`] containing the spawned [`Codex`],
/// the submission id for the initial `ConfigureSession` request and the
/// unique session id.
pub struct CodexSpawnOk {
pub codex : Codex ,
2025-09-07 20:22:25 -07:00
pub conversation_id : ConversationId ,
2025-07-27 20:01:35 -07:00
}
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
pub ( crate ) const INITIAL_SUBMIT_ID : & str = " " ;
2025-08-23 09:54:31 -07:00
pub ( crate ) const SUBMISSION_CHANNEL_CAPACITY : usize = 64 ;
// Model-formatting limits: clients get full streams; oonly content sent to the model is truncated.
pub ( crate ) const MODEL_FORMAT_MAX_BYTES : usize = 10 * 1024 ; // 10 KiB
pub ( crate ) const MODEL_FORMAT_MAX_LINES : usize = 256 ; // lines
pub ( crate ) const MODEL_FORMAT_HEAD_LINES : usize = MODEL_FORMAT_MAX_LINES / 2 ;
pub ( crate ) const MODEL_FORMAT_TAIL_LINES : usize = MODEL_FORMAT_MAX_LINES - MODEL_FORMAT_HEAD_LINES ; // 128
pub ( crate ) const MODEL_FORMAT_HEAD_BYTES : usize = MODEL_FORMAT_MAX_BYTES / 2 ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
impl Codex {
2025-07-27 20:01:35 -07:00
/// Spawn a new [`Codex`] and initialize the session.
2025-08-22 13:10:11 -07:00
pub async fn spawn (
config : Config ,
auth_manager : Arc < AuthManager > ,
2025-09-02 15:44:29 -07:00
conversation_history : InitialHistory ,
2025-08-22 13:10:11 -07:00
) -> CodexResult < CodexSpawnOk > {
2025-08-23 09:54:31 -07:00
let ( tx_sub , rx_sub ) = async_channel ::bounded ( SUBMISSION_CHANNEL_CAPACITY ) ;
2025-08-04 21:23:22 -07:00
let ( tx_event , rx_event ) = async_channel ::unbounded ( ) ;
2025-05-10 17:52:59 -07:00
2025-07-22 09:42:22 -07:00
let user_instructions = get_user_instructions ( & config ) . await ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
let config = Arc ::new ( config ) ;
let configure_session = ConfigureSession {
2025-05-07 17:38:28 -07:00
provider : config . model_provider . clone ( ) ,
2025-05-07 16:33:28 -07:00
model : config . model . clone ( ) ,
feat: make reasoning effort/summaries configurable (#1199)
Previous to this PR, we always set `reasoning` when making a request
using the Responses API:
https://github.com/openai/codex/blob/d7245cbbc9d8ff5446da45e5951761103492476d/codex-rs/core/src/client.rs#L108-L111
Though if you tried to use the Rust CLI with `--model gpt-4.1`, this
would fail with:
```shell
"Unsupported parameter: 'reasoning.effort' is not supported with this model."
```
We take a cue from the TypeScript CLI, which does a check on the model
name:
https://github.com/openai/codex/blob/d7245cbbc9d8ff5446da45e5951761103492476d/codex-cli/src/utils/agent/agent-loop.ts#L786-L789
This PR does a similar check, though also adds support for the following
config options:
```
model_reasoning_effort = "low" | "medium" | "high" | "none"
model_reasoning_summary = "auto" | "concise" | "detailed" | "none"
```
This way, if you have a model whose name happens to start with `"o"` (or
`"codex"`?), you can set these to `"none"` to explicitly disable
reasoning, if necessary. (That said, it seems unlikely anyone would use
the Responses API with non-OpenAI models, but we provide an escape
hatch, anyway.)
This PR also updates both the TUI and `codex exec` to show `reasoning
effort` and `reasoning summaries` in the header.
2025-06-02 16:01:34 -07:00
model_reasoning_effort : config . model_reasoning_effort ,
model_reasoning_summary : config . model_reasoning_summary ,
2025-07-22 09:42:22 -07:00
user_instructions ,
base_instructions : config . base_instructions . clone ( ) ,
2025-05-07 16:33:28 -07:00
approval_policy : config . approval_policy ,
sandbox_policy : config . sandbox_policy . clone ( ) ,
2025-09-23 07:25:46 -07:00
notify : UserNotifier ::new ( config . notify . clone ( ) ) ,
2025-05-07 16:33:28 -07:00
cwd : config . cwd . clone ( ) ,
} ;
2025-07-21 21:01:56 -07:00
// Generate a unique ID for the lifetime of this Codex session.
2025-08-22 13:10:11 -07:00
let ( session , turn_context ) = Session ::new (
configure_session ,
config . clone ( ) ,
auth_manager . clone ( ) ,
tx_event . clone ( ) ,
2025-09-14 09:23:31 -04:00
conversation_history ,
2025-08-22 13:10:11 -07:00
)
. await
. map_err ( | e | {
error! ( " Failed to create session: {e:#} " ) ;
CodexErr ::InternalAgentDied
} ) ? ;
2025-09-07 20:22:25 -07:00
let conversation_id = session . conversation_id ;
chore: introduce ConversationManager as a clearinghouse for all conversations (#2240)
This PR does two things because after I got deep into the first one I
started pulling on the thread to the second:
- Makes `ConversationManager` the place where all in-memory
conversations are created and stored. Previously, `MessageProcessor` in
the `codex-mcp-server` crate was doing this via its `session_map`, but
this is something that should be done in `codex-core`.
- It unwinds the `ctrl_c: tokio::sync::Notify` that was threaded
throughout our code. I think this made sense at one time, but now that
we handle Ctrl-C within the TUI and have a proper `Op::Interrupt` event,
I don't think this was quite right, so I removed it. For `codex exec`
and `codex proto`, we now use `tokio::signal::ctrl_c()` directly, but we
no longer make `Notify` a field of `Codex` or `CodexConversation`.
Changes of note:
- Adds the files `conversation_manager.rs` and `codex_conversation.rs`
to `codex-core`.
- `Codex` and `CodexSpawnOk` are no longer exported from `codex-core`:
other crates must use `CodexConversation` instead (which is created via
`ConversationManager`).
- `core/src/codex_wrapper.rs` has been deleted in favor of
`ConversationManager`.
- `ConversationManager::new_conversation()` returns `NewConversation`,
which is in line with the `new_conversation` tool we want to add to the
MCP server. Note `NewConversation` includes `SessionConfiguredEvent`, so
we eliminate checks in cases like `codex-rs/core/tests/client.rs` to
verify `SessionConfiguredEvent` is the first event because that is now
internal to `ConversationManager`.
- Quite a bit of code was deleted from
`codex-rs/mcp-server/src/message_processor.rs` since it no longer has to
manage multiple conversations itself: it goes through
`ConversationManager` instead.
- `core/tests/live_agent.rs` has been deleted because I had to update a
bunch of tests and all the tests in here were ignored, and I don't think
anyone ever ran them, so this was just technical debt, at this point.
- Removed `notify_on_sigint()` from `util.rs` (and in a follow-up, I
hope to refactor the blandly-named `util.rs` into more descriptive
files).
- In general, I started replacing local variables named `codex` as
`conversation`, where appropriate, though admittedly I didn't do it
through all the integration tests because that would have added a lot of
noise to this PR.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2240).
* #2264
* #2263
* __->__ #2240
2025-08-13 13:38:18 -07:00
// This task will run until Op::Shutdown is received.
2025-09-11 11:59:37 -07:00
tokio ::spawn ( submission_loop ( session , turn_context , config , rx_sub ) ) ;
2025-05-07 16:33:28 -07:00
let codex = Codex {
next_id : AtomicU64 ::new ( 0 ) ,
tx_sub ,
rx_event ,
} ;
2025-09-07 20:22:25 -07:00
Ok ( CodexSpawnOk {
codex ,
conversation_id ,
} )
2025-05-07 16:33:28 -07:00
}
/// Submit the `op` wrapped in a `Submission` with a unique ID.
pub async fn submit ( & self , op : Op ) -> CodexResult < String > {
let id = self
. next_id
. fetch_add ( 1 , std ::sync ::atomic ::Ordering ::SeqCst )
. to_string ( ) ;
let sub = Submission { id : id . clone ( ) , op } ;
self . submit_with_id ( sub ) . await ? ;
Ok ( id )
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-05-07 16:33:28 -07:00
/// Use sparingly: prefer `submit()` so Codex is responsible for generating
/// unique IDs for each submission.
pub async fn submit_with_id ( & self , sub : Submission ) -> CodexResult < ( ) > {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
self . tx_sub
. send ( sub )
. await
2025-05-07 16:33:28 -07:00
. map_err ( | _ | CodexErr ::InternalAgentDied ) ? ;
Ok ( ( ) )
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
pub async fn next_event ( & self ) -> CodexResult < Event > {
let event = self
. rx_event
. recv ( )
. await
. map_err ( | _ | CodexErr ::InternalAgentDied ) ? ;
Ok ( event )
}
}
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
use crate ::state ::SessionState ;
2025-08-13 22:53:54 -07:00
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
/// Context for an initialized model agent
///
/// A session has at most 1 running task at a time, and can be interrupted by user input.
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
pub ( crate ) struct Session {
2025-09-07 20:22:25 -07:00
conversation_id : ConversationId ,
2025-08-13 22:53:54 -07:00
tx_event : Sender < Event > ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state : Mutex < SessionState > ,
2025-09-26 15:49:08 +02:00
pub ( crate ) active_turn : Mutex < Option < ActiveTurn > > ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
services : SessionServices ,
2025-09-18 18:21:52 +01:00
next_internal_sub_id : AtomicU64 ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-15 09:40:02 -07:00
/// The context needed for a single turn of the conversation.
#[ derive(Debug) ]
pub ( crate ) struct TurnContext {
pub ( crate ) client : ModelClient ,
/// The session's current working directory. All relative paths provided by
/// the model as well as sandbox policies are resolved against this path
/// instead of `std::env::current_dir()`.
pub ( crate ) cwd : PathBuf ,
pub ( crate ) base_instructions : Option < String > ,
pub ( crate ) user_instructions : Option < String > ,
pub ( crate ) approval_policy : AskForApproval ,
pub ( crate ) sandbox_policy : SandboxPolicy ,
pub ( crate ) shell_environment_policy : ShellEnvironmentPolicy ,
pub ( crate ) tools_config : ToolsConfig ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
pub ( crate ) is_review_mode : bool ,
2025-09-23 13:59:16 -07:00
pub ( crate ) final_output_json_schema : Option < Value > ,
2025-08-15 09:40:02 -07:00
}
impl TurnContext {
fn resolve_path ( & self , path : Option < String > ) -> PathBuf {
path . as_ref ( )
. map ( PathBuf ::from )
. map_or_else ( | | self . cwd . clone ( ) , | p | self . cwd . join ( p ) )
}
}
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
/// Configure the model session.
struct ConfigureSession {
/// Provider identifier ("openai", "openrouter", ...).
provider : ModelProviderInfo ,
/// If not specified, server will use its default model.
model : String ,
2025-09-12 12:06:33 -07:00
model_reasoning_effort : Option < ReasoningEffortConfig > ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
model_reasoning_summary : ReasoningSummaryConfig ,
/// Model instructions that are appended to the base instructions.
user_instructions : Option < String > ,
/// Base instructions override.
base_instructions : Option < String > ,
/// When to escalate for approval for execution
approval_policy : AskForApproval ,
/// How to sandbox commands executed in the system
sandbox_policy : SandboxPolicy ,
2025-09-23 07:25:46 -07:00
notify : UserNotifier ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
/// Working directory that should be treated as the *root* of the
/// session. All relative paths supplied by the model as well as the
/// execution sandbox are resolved against this directory **instead**
/// of the process-wide current working directory. CLI front-ends are
/// expected to expand this to an absolute path before sending the
/// `ConfigureSession` operation so that the business-logic layer can
/// operate deterministically.
cwd : PathBuf ,
}
2025-05-04 10:57:12 -07:00
impl Session {
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
async fn new (
configure_session : ConfigureSession ,
config : Arc < Config > ,
2025-08-22 13:10:11 -07:00
auth_manager : Arc < AuthManager > ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
tx_event : Sender < Event > ,
2025-09-03 21:47:00 -07:00
initial_history : InitialHistory ,
2025-08-15 09:40:02 -07:00
) -> anyhow ::Result < ( Arc < Self > , TurnContext ) > {
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
let ConfigureSession {
provider ,
model ,
model_reasoning_effort ,
model_reasoning_summary ,
user_instructions ,
base_instructions ,
approval_policy ,
sandbox_policy ,
notify ,
cwd ,
} = configure_session ;
debug! ( " Configuring session: model={model}; provider={provider:?} " ) ;
if ! cwd . is_absolute ( ) {
return Err ( anyhow ::anyhow! ( " cwd is not absolute: {cwd:?} " ) ) ;
}
2025-09-08 14:54:47 -07:00
let ( conversation_id , rollout_params ) = match & initial_history {
InitialHistory ::New | InitialHistory ::Forked ( _ ) = > {
let conversation_id = ConversationId ::default ( ) ;
(
conversation_id ,
RolloutRecorderParams ::new ( conversation_id , user_instructions . clone ( ) ) ,
)
}
InitialHistory ::Resumed ( resumed_history ) = > (
resumed_history . conversation_id ,
RolloutRecorderParams ::resume ( resumed_history . rollout_path . clone ( ) ) ,
) ,
} ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
// Error messages to dispatch after SessionConfigured is sent.
let mut post_session_configured_error_events = Vec ::< Event > ::new ( ) ;
2025-08-14 13:29:58 -07:00
// Kick off independent async setup tasks in parallel to reduce startup latency.
//
// - initialize RolloutRecorder with new or resumed session info
// - spin up MCP connection manager
// - perform default shell discovery
// - load history metadata
2025-09-08 14:54:47 -07:00
let rollout_fut = RolloutRecorder ::new ( & config , rollout_params ) ;
2025-08-14 13:29:58 -07:00
2025-09-26 10:13:37 -07:00
let mcp_fut = McpConnectionManager ::new (
config . mcp_servers . clone ( ) ,
config . use_experimental_use_rmcp_client ,
) ;
2025-09-10 12:40:24 -07:00
let default_shell_fut = shell ::default_user_shell ( ) ;
2025-08-14 13:29:58 -07:00
let history_meta_fut = crate ::message_history ::history_metadata ( & config ) ;
// Join all independent futures.
2025-09-02 15:44:29 -07:00
let ( rollout_recorder , mcp_res , default_shell , ( history_log_id , history_entry_count ) ) =
2025-08-14 13:29:58 -07:00
tokio ::join! ( rollout_fut , mcp_fut , default_shell_fut , history_meta_fut ) ;
2025-09-02 15:44:29 -07:00
let rollout_recorder = rollout_recorder . map_err ( | e | {
error! ( " failed to initialize rollout recorder: {e:#} " ) ;
anyhow ::anyhow! ( " failed to initialize rollout recorder: {e:#} " )
} ) ? ;
2025-09-09 00:11:48 -07:00
let rollout_path = rollout_recorder . rollout_path . clone ( ) ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
// Create the mutable state for the Session.
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let state = SessionState ::new ( ) ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
2025-08-14 13:29:58 -07:00
// Handle MCP manager result and record any startup failures.
let ( mcp_connection_manager , failed_clients ) = match mcp_res {
Ok ( ( mgr , failures ) ) = > ( mgr , failures ) ,
Err ( e ) = > {
let message = format! ( " Failed to create MCP connection manager: {e:#} " ) ;
error! ( " {message} " ) ;
post_session_configured_error_events . push ( Event {
id : INITIAL_SUBMIT_ID . to_owned ( ) ,
msg : EventMsg ::Error ( ErrorEvent { message } ) ,
} ) ;
( McpConnectionManager ::default ( ) , Default ::default ( ) )
}
} ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
// Surface individual client start-up failures to the user.
if ! failed_clients . is_empty ( ) {
for ( server_name , err ) in failed_clients {
let message = format! ( " MCP client for ` {server_name} ` failed to start: {err:#} " ) ;
error! ( " {message} " ) ;
post_session_configured_error_events . push ( Event {
id : INITIAL_SUBMIT_ID . to_owned ( ) ,
msg : EventMsg ::Error ( ErrorEvent { message } ) ,
} ) ;
}
}
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let otel_event_manager = OtelEventManager ::new (
conversation_id ,
config . model . as_str ( ) ,
config . model_family . slug . as_str ( ) ,
auth_manager . auth ( ) . and_then ( | a | a . get_account_id ( ) ) ,
auth_manager . auth ( ) . map ( | a | a . mode ) ,
config . otel . log_user_prompt ,
terminal ::user_agent ( ) ,
) ;
otel_event_manager . conversation_starts (
config . model_provider . name . as_str ( ) ,
config . model_reasoning_effort ,
config . model_reasoning_summary ,
config . model_context_window ,
config . model_max_output_tokens ,
config . model_auto_compact_token_limit ,
config . approval_policy ,
config . sandbox_policy . clone ( ) ,
config . mcp_servers . keys ( ) . map ( String ::as_str ) . collect ( ) ,
config . active_profile . clone ( ) ,
) ;
2025-09-07 20:22:25 -07:00
// Now that the conversation id is final (may have been updated by resume),
2025-08-14 13:29:58 -07:00
// construct the model client.
let client = ModelClient ::new (
config . clone ( ) ,
2025-08-22 13:10:11 -07:00
Some ( auth_manager . clone ( ) ) ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager ,
2025-08-14 13:29:58 -07:00
provider . clone ( ) ,
model_reasoning_effort ,
model_reasoning_summary ,
2025-09-07 20:22:25 -07:00
conversation_id ,
2025-08-14 13:29:58 -07:00
) ;
2025-08-15 09:40:02 -07:00
let turn_context = TurnContext {
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
client ,
2025-08-24 22:43:42 -07:00
tools_config : ToolsConfig ::new ( & ToolsConfigParams {
model_family : & config . model_family ,
include_plan_tool : config . include_plan_tool ,
include_apply_patch_tool : config . include_apply_patch_tool ,
include_web_search_request : config . tools_web_search_request ,
use_streamable_shell_tool : config . use_experimental_streamable_shell_tool ,
2025-08-27 17:41:23 -07:00
include_view_image_tool : config . include_view_image_tool ,
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
experimental_unified_exec_tool : config . use_experimental_unified_exec_tool ,
2025-08-24 22:43:42 -07:00
} ) ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
user_instructions ,
base_instructions ,
approval_policy ,
sandbox_policy ,
shell_environment_policy : config . shell_environment_policy . clone ( ) ,
cwd ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
is_review_mode : false ,
2025-09-23 13:59:16 -07:00
final_output_json_schema : None ,
2025-08-15 09:40:02 -07:00
} ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let services = SessionServices {
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
mcp_connection_manager ,
2025-08-24 22:52:49 -07:00
session_manager : ExecSessionManager ::default ( ) ,
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
unified_exec_manager : UnifiedExecSessionManager ::default ( ) ,
2025-09-23 07:25:46 -07:00
notifier : notify ,
2025-09-02 15:44:29 -07:00
rollout : Mutex ::new ( Some ( rollout_recorder ) ) ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
codex_linux_sandbox_exe : config . codex_linux_sandbox_exe . clone ( ) ,
user_shell : default_shell ,
show_raw_agent_reasoning : config . show_raw_agent_reasoning ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
} ;
let sess = Arc ::new ( Session {
conversation_id ,
tx_event : tx_event . clone ( ) ,
state : Mutex ::new ( state ) ,
active_turn : Mutex ::new ( None ) ,
services ,
2025-09-18 18:21:52 +01:00
next_internal_sub_id : AtomicU64 ::new ( 0 ) ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
} ) ;
2025-08-14 13:29:58 -07:00
// Dispatch the SessionConfiguredEvent first and then report any errors.
2025-09-03 21:47:00 -07:00
// If resuming, include converted initial messages in the payload so UIs can render them immediately.
2025-09-09 16:52:33 -07:00
let initial_messages = initial_history . get_event_msgs ( ) ;
sess . record_initial_history ( & turn_context , initial_history )
. await ;
2025-09-03 22:34:50 -07:00
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
let events = std ::iter ::once ( Event {
id : INITIAL_SUBMIT_ID . to_owned ( ) ,
msg : EventMsg ::SessionConfigured ( SessionConfiguredEvent {
2025-09-07 20:22:25 -07:00
session_id : conversation_id ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
model ,
2025-09-11 21:04:40 -07:00
reasoning_effort : model_reasoning_effort ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
history_log_id ,
history_entry_count ,
2025-09-03 21:47:00 -07:00
initial_messages ,
2025-09-09 00:11:48 -07:00
rollout_path ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
} ) ,
} )
. chain ( post_session_configured_error_events . into_iter ( ) ) ;
for event in events {
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
}
2025-08-15 09:40:02 -07:00
Ok ( ( sess , turn_context ) )
2025-05-04 10:57:12 -07:00
}
2025-09-12 13:07:10 -07:00
fn next_internal_sub_id ( & self ) -> String {
2025-09-18 18:21:52 +01:00
let id = self
. next_internal_sub_id
. fetch_add ( 1 , std ::sync ::atomic ::Ordering ::SeqCst ) ;
2025-09-12 13:07:10 -07:00
format! ( " auto-compact- {id} " )
}
2025-09-02 15:44:29 -07:00
async fn record_initial_history (
& self ,
turn_context : & TurnContext ,
conversation_history : InitialHistory ,
) {
match conversation_history {
InitialHistory ::New = > {
2025-09-09 16:52:33 -07:00
// Build and record initial items (user instructions + environment context)
let items = self . build_initial_context ( turn_context ) ;
self . record_conversation_items ( & items ) . await ;
2025-09-02 15:44:29 -07:00
}
2025-09-09 16:52:33 -07:00
InitialHistory ::Resumed ( _ ) | InitialHistory ::Forked ( _ ) = > {
let rollout_items = conversation_history . get_rollout_items ( ) ;
let persist = matches! ( conversation_history , InitialHistory ::Forked ( _ ) ) ;
// Always add response items to conversation history
2025-09-14 09:23:31 -04:00
let reconstructed_history =
self . reconstruct_history_from_rollout ( turn_context , & rollout_items ) ;
if ! reconstructed_history . is_empty ( ) {
2025-09-18 18:21:52 +01:00
self . record_into_history ( & reconstructed_history ) . await ;
2025-09-09 16:52:33 -07:00
}
// If persisting, persist all rollout items as-is (recorder filters)
if persist & & ! rollout_items . is_empty ( ) {
self . persist_rollout_items ( & rollout_items ) . await ;
}
2025-09-02 15:44:29 -07:00
}
}
}
2025-09-09 16:52:33 -07:00
/// Persist the event to rollout and send it to clients.
2025-05-06 16:21:35 -07:00
pub ( crate ) async fn send_event ( & self , event : Event ) {
2025-09-09 16:52:33 -07:00
// Persist the event into rollout (recorder filters as needed)
let rollout_items = vec! [ RolloutItem ::EventMsg ( event . msg . clone ( ) ) ] ;
self . persist_rollout_items ( & rollout_items ) . await ;
2025-05-06 16:21:35 -07:00
if let Err ( e ) = self . tx_event . send ( event ) . await {
error! ( " failed to send tool call event: {e} " ) ;
}
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
pub async fn request_command_approval (
& self ,
sub_id : String ,
2025-07-23 11:43:53 -07:00
call_id : String ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
command : Vec < String > ,
cwd : PathBuf ,
reason : Option < String > ,
2025-09-23 07:25:46 -07:00
) -> ReviewDecision {
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
// Add the tx_approve callback to the map before sending the request.
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let ( tx_approve , rx_approve ) = oneshot ::channel ( ) ;
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
let event_id = sub_id . clone ( ) ;
let prev_entry = {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let mut active = self . active_turn . lock ( ) . await ;
match active . as_mut ( ) {
Some ( at ) = > {
let mut ts = at . turn_state . lock ( ) . await ;
ts . insert_pending_approval ( sub_id , tx_approve )
}
None = > None ,
}
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
} ;
if prev_entry . is_some ( ) {
warn! ( " Overwriting existing pending approval for sub_id: {event_id} " ) ;
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let event = Event {
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
id : event_id ,
2025-05-13 20:44:42 -07:00
msg : EventMsg ::ExecApprovalRequest ( ExecApprovalRequestEvent {
2025-07-23 11:43:53 -07:00
call_id ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
command ,
cwd ,
reason ,
2025-05-13 20:44:42 -07:00
} ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
2025-09-09 16:52:33 -07:00
self . send_event ( event ) . await ;
2025-09-23 07:25:46 -07:00
rx_approve . await . unwrap_or_default ( )
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
pub async fn request_patch_approval (
& self ,
sub_id : String ,
2025-07-23 12:55:35 -07:00
call_id : String ,
fix: ensure apply_patch resolves relative paths against workdir or project cwd (#810)
https://github.com/openai/codex/pull/800 kicked off some work to be more
disciplined about honoring the `cwd` param passed in rather than
assuming `std::env::current_dir()` as the `cwd`. As part of this, we
need to ensure `apply_patch` calls honor the appropriate `cwd` as well,
which is significant if the paths in the `apply_patch` arg are not
absolute paths themselves. Failing that:
- The `apply_patch` function call can contain an optional`workdir`
param, so:
- If specified and is an absolute path, it should be used to resolve
relative paths
- If specified and is a relative path, should be resolved against
`Config.cwd` and then any relative paths will be resolved against the
result
- If `workdir` is not specified on the function call, relative paths
should be resolved against `Config.cwd`
Note that we had a similar issue in the TypeScript CLI that was fixed in
https://github.com/openai/codex/pull/556.
As part of the fix, this PR introduces `ApplyPatchAction` so clients can
deal with that instead of the raw `HashMap<PathBuf,
ApplyPatchFileChange>`. This enables us to enforce, by construction,
that all paths contained in the `ApplyPatchAction` are absolute paths.
2025-05-04 12:32:51 -07:00
action : & ApplyPatchAction ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
reason : Option < String > ,
grant_root : Option < PathBuf > ,
) -> oneshot ::Receiver < ReviewDecision > {
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
// Add the tx_approve callback to the map before sending the request.
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let ( tx_approve , rx_approve ) = oneshot ::channel ( ) ;
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
let event_id = sub_id . clone ( ) ;
let prev_entry = {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let mut active = self . active_turn . lock ( ) . await ;
match active . as_mut ( ) {
Some ( at ) = > {
let mut ts = at . turn_state . lock ( ) . await ;
ts . insert_pending_approval ( sub_id , tx_approve )
}
None = > None ,
}
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
} ;
if prev_entry . is_some ( ) {
warn! ( " Overwriting existing pending approval for sub_id: {event_id} " ) ;
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let event = Event {
fix: add callback to map before sending request to fix race condition (#3146)
Last week, I thought I found the smoking gun in our flaky integration
tests where holding these locks could have led to potential deadlock:
- https://github.com/openai/codex/pull/2876
- https://github.com/openai/codex/pull/2878
Yet even after those PRs went in, we continued to see flakinees in our
integration tests! Though with the additional logging added as part of
debugging those tests, I now saw things like:
```
read message from stdout: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
notification: Notification(JSONRPCNotification { jsonrpc: "2.0", method: "codex/event/exec_approval_request", params: Some(Object {"id": String("0"), "msg": Object {"type": String("exec_approval_request"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}, "conversationId": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6")}) })
read message from stdout: Request(JSONRPCRequest { id: Integer(0), jsonrpc: "2.0", method: "execCommandApproval", params: Some(Object {"conversation_id": String("c67b32c5-9475-41bf-8680-f4b4834ebcc6"), "call_id": String("call1"), "command": Array [String("python3"), String("-c"), String("print(42)")], "cwd": String("/tmp/.tmpFj2zwi/workdir")}) })
writing message to stdin: Response(JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} })
in read_stream_until_notification_message(codex/event/task_complete)
[mcp stderr] 2025-09-04T00:00:59.738585Z INFO codex_mcp_server::message_processor: <- response: JSONRPCResponse { id: Integer(0), jsonrpc: "2.0", result: Object {"decision": String("approved")} }
[mcp stderr] 2025-09-04T00:00:59.738740Z DEBUG codex_core::codex: Submission sub=Submission { id: "1", op: ExecApproval { id: "0", decision: Approved } }
[mcp stderr] 2025-09-04T00:00:59.738832Z WARN codex_core::codex: No pending approval found for sub_id: 0
```
That is, a response was sent for a request, but no callback was in place
to handle the response!
This time, I think I may have found the underlying issue (though the
fixes for holding locks for too long may have also been part of it),
which is I found cases where we were sending the request:
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L597
before inserting the `Sender` into the `pending_approvals` map (which
has to wait on acquiring a mutex):
https://github.com/openai/codex/blob/234c0a0469db222f05df08d00ae5032312f77427/codex-rs/core/src/codex.rs#L598-L601
so it is possible the request could go out and the client could respond
before `pending_approvals` was updated!
Note this was happening in both `request_command_approval()` and
`request_patch_approval()`, which maps to the sorts of errors we have
been seeing when these integration tests have been flaking on us.
While here, I am also adding some extra logging that prints if inserting
into `pending_approvals` overwrites an entry as opposed to purely
inserting one. Today, a conversation can have only one pending request
at a time, but as we are planning to support parallel tool calls, this
invariant may not continue to hold, in which case we need to revisit
this abstraction.
2025-09-04 07:38:28 -07:00
id : event_id ,
2025-05-13 20:44:42 -07:00
msg : EventMsg ::ApplyPatchApprovalRequest ( ApplyPatchApprovalRequestEvent {
2025-07-23 12:55:35 -07:00
call_id ,
fix: ensure apply_patch resolves relative paths against workdir or project cwd (#810)
https://github.com/openai/codex/pull/800 kicked off some work to be more
disciplined about honoring the `cwd` param passed in rather than
assuming `std::env::current_dir()` as the `cwd`. As part of this, we
need to ensure `apply_patch` calls honor the appropriate `cwd` as well,
which is significant if the paths in the `apply_patch` arg are not
absolute paths themselves. Failing that:
- The `apply_patch` function call can contain an optional`workdir`
param, so:
- If specified and is an absolute path, it should be used to resolve
relative paths
- If specified and is a relative path, should be resolved against
`Config.cwd` and then any relative paths will be resolved against the
result
- If `workdir` is not specified on the function call, relative paths
should be resolved against `Config.cwd`
Note that we had a similar issue in the TypeScript CLI that was fixed in
https://github.com/openai/codex/pull/556.
As part of the fix, this PR introduces `ApplyPatchAction` so clients can
deal with that instead of the raw `HashMap<PathBuf,
ApplyPatchFileChange>`. This enables us to enforce, by construction,
that all paths contained in the `ApplyPatchAction` are absolute paths.
2025-05-04 12:32:51 -07:00
changes : convert_apply_patch_to_protocol ( action ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
reason ,
grant_root ,
2025-05-13 20:44:42 -07:00
} ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
2025-09-09 16:52:33 -07:00
self . send_event ( event ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
rx_approve
}
2025-09-18 18:21:52 +01:00
pub async fn notify_approval ( & self , sub_id : & str , decision : ReviewDecision ) {
2025-08-28 22:49:29 -07:00
let entry = {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let mut active = self . active_turn . lock ( ) . await ;
match active . as_mut ( ) {
Some ( at ) = > {
let mut ts = at . turn_state . lock ( ) . await ;
ts . remove_pending_approval ( sub_id )
}
None = > None ,
}
2025-08-28 22:49:29 -07:00
} ;
match entry {
Some ( tx_approve ) = > {
tx_approve . send ( decision ) . ok ( ) ;
}
None = > {
warn! ( " No pending approval found for sub_id: {sub_id} " ) ;
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
2025-09-18 18:21:52 +01:00
pub async fn add_approved_command ( & self , cmd : Vec < String > ) {
let mut state = self . state . lock ( ) . await ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state . add_approved_command ( cmd ) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-09-09 16:52:33 -07:00
/// Records input items: always append to conversation history and
/// persist these response items to rollout.
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
async fn record_conversation_items ( & self , items : & [ ResponseItem ] ) {
2025-09-18 18:21:52 +01:00
self . record_into_history ( items ) . await ;
2025-09-09 16:52:33 -07:00
self . persist_rollout_response_items ( items ) . await ;
2025-09-08 14:54:47 -07:00
}
2025-09-14 09:23:31 -04:00
fn reconstruct_history_from_rollout (
& self ,
turn_context : & TurnContext ,
rollout_items : & [ RolloutItem ] ,
) -> Vec < ResponseItem > {
let mut history = ConversationHistory ::new ( ) ;
for item in rollout_items {
match item {
RolloutItem ::ResponseItem ( response_item ) = > {
history . record_items ( std ::iter ::once ( response_item ) ) ;
}
RolloutItem ::Compacted ( compacted ) = > {
let snapshot = history . contents ( ) ;
let user_messages = collect_user_messages ( & snapshot ) ;
let rebuilt = build_compacted_history (
self . build_initial_context ( turn_context ) ,
& user_messages ,
& compacted . message ,
) ;
history . replace ( rebuilt ) ;
}
_ = > { }
}
}
history . contents ( )
}
2025-09-09 16:52:33 -07:00
/// Append ResponseItems to the in-memory conversation history only.
2025-09-18 18:21:52 +01:00
async fn record_into_history ( & self , items : & [ ResponseItem ] ) {
let mut state = self . state . lock ( ) . await ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state . record_items ( items . iter ( ) ) ;
}
async fn replace_history ( & self , items : Vec < ResponseItem > ) {
let mut state = self . state . lock ( ) . await ;
state . replace_history ( items ) ;
2025-09-09 16:52:33 -07:00
}
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
2025-09-09 16:52:33 -07:00
async fn persist_rollout_response_items ( & self , items : & [ ResponseItem ] ) {
let rollout_items : Vec < RolloutItem > = items
. iter ( )
. cloned ( )
. map ( RolloutItem ::ResponseItem )
. collect ( ) ;
self . persist_rollout_items ( & rollout_items ) . await ;
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
}
2025-09-18 13:55:53 -07:00
pub ( crate ) fn build_initial_context ( & self , turn_context : & TurnContext ) -> Vec < ResponseItem > {
2025-09-09 16:52:33 -07:00
let mut items = Vec ::< ResponseItem > ::with_capacity ( 2 ) ;
if let Some ( user_instructions ) = turn_context . user_instructions . as_deref ( ) {
items . push ( UserInstructions ::new ( user_instructions . to_string ( ) ) . into ( ) ) ;
}
items . push ( ResponseItem ::from ( EnvironmentContext ::new (
Some ( turn_context . cwd . clone ( ) ) ,
Some ( turn_context . approval_policy ) ,
Some ( turn_context . sandbox_policy . clone ( ) ) ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
Some ( self . user_shell ( ) . clone ( ) ) ,
2025-09-09 16:52:33 -07:00
) ) ) ;
items
}
2025-07-18 17:04:04 -07:00
2025-09-09 16:52:33 -07:00
async fn persist_rollout_items ( & self , items : & [ RolloutItem ] ) {
2025-05-07 13:49:15 -07:00
let recorder = {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let guard = self . services . rollout . lock ( ) . await ;
2025-09-18 18:21:52 +01:00
guard . clone ( )
2025-05-07 13:49:15 -07:00
} ;
2025-09-09 16:52:33 -07:00
if let Some ( rec ) = recorder
& & let Err ( e ) = rec . record_items ( items ) . await
{
error! ( " failed to record rollout items: {e:#} " ) ;
}
}
2025-05-07 13:49:15 -07:00
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
pub ( crate ) async fn history_snapshot ( & self ) -> Vec < ResponseItem > {
let state = self . state . lock ( ) . await ;
state . history_snapshot ( )
}
2025-09-18 18:21:52 +01:00
async fn update_token_usage_info (
2025-09-12 13:07:10 -07:00
& self ,
2025-09-23 15:56:34 -07:00
sub_id : & str ,
2025-09-12 13:07:10 -07:00
turn_context : & TurnContext ,
2025-09-20 21:26:16 -07:00
token_usage : Option < & TokenUsage > ,
) {
2025-09-23 15:56:34 -07:00
{
let mut state = self . state . lock ( ) . await ;
if let Some ( token_usage ) = token_usage {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state . update_token_info_from_usage (
token_usage ,
2025-09-23 15:56:34 -07:00
turn_context . client . get_model_context_window ( ) ,
) ;
}
2025-09-20 21:26:16 -07:00
}
2025-09-23 15:56:34 -07:00
self . send_token_count_event ( sub_id ) . await ;
2025-09-20 21:26:16 -07:00
}
2025-09-23 15:56:34 -07:00
async fn update_rate_limits ( & self , sub_id : & str , new_rate_limits : RateLimitSnapshot ) {
{
let mut state = self . state . lock ( ) . await ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state . set_rate_limits ( new_rate_limits ) ;
2025-09-23 15:56:34 -07:00
}
self . send_token_count_event ( sub_id ) . await ;
2025-09-20 21:26:16 -07:00
}
2025-09-23 15:56:34 -07:00
async fn send_token_count_event ( & self , sub_id : & str ) {
let ( info , rate_limits ) = {
let state = self . state . lock ( ) . await ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state . token_info_and_rate_limits ( )
2025-09-23 15:56:34 -07:00
} ;
let event = Event {
id : sub_id . to_string ( ) ,
msg : EventMsg ::TokenCount ( TokenCountEvent { info , rate_limits } ) ,
} ;
self . send_event ( event ) . await ;
2025-09-12 13:07:10 -07:00
}
2025-09-09 16:52:33 -07:00
/// Record a user input item to conversation history and also persist a
/// corresponding UserMessage EventMsg to rollout.
async fn record_input_and_rollout_usermsg ( & self , response_input : & ResponseInputItem ) {
let response_item : ResponseItem = response_input . clone ( ) . into ( ) ;
// Add to conversation history and persist response item to rollout
self . record_conversation_items ( std ::slice ::from_ref ( & response_item ) )
. await ;
// Derive user message events and persist only UserMessage to rollout
let msgs =
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
map_response_item_to_event_messages ( & response_item , self . show_raw_agent_reasoning ( ) ) ;
2025-09-09 16:52:33 -07:00
let user_msgs : Vec < RolloutItem > = msgs
. into_iter ( )
. filter_map ( | m | match m {
EventMsg ::UserMessage ( ev ) = > Some ( RolloutItem ::EventMsg ( EventMsg ::UserMessage ( ev ) ) ) ,
_ = > None ,
} )
. collect ( ) ;
if ! user_msgs . is_empty ( ) {
self . persist_rollout_items ( & user_msgs ) . await ;
2025-05-07 13:49:15 -07:00
}
}
2025-08-04 08:57:04 -07:00
async fn on_exec_command_begin (
& self ,
turn_diff_tracker : & mut TurnDiffTracker ,
exec_command_context : ExecCommandContext ,
) {
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
let ExecCommandContext {
sub_id ,
call_id ,
command_for_display ,
cwd ,
apply_patch ,
} = exec_command_context ;
let msg = match apply_patch {
Some ( ApplyPatchCommandContext {
user_explicitly_approved_this_action ,
changes ,
2025-08-04 08:57:04 -07:00
} ) = > {
turn_diff_tracker . on_patch_begin ( & changes ) ;
EventMsg ::PatchApplyBegin ( PatchApplyBeginEvent {
call_id ,
auto_approved : ! user_explicitly_approved_this_action ,
changes ,
} )
}
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
None = > EventMsg ::ExecCommandBegin ( ExecCommandBeginEvent {
call_id ,
command : command_for_display . clone ( ) ,
cwd ,
2025-08-15 12:44:40 -07:00
parsed_cmd : parse_command ( & command_for_display )
. into_iter ( )
. map ( Into ::into )
. collect ( ) ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
} ) ,
} ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let event = Event {
id : sub_id . to_string ( ) ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
msg ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
2025-09-09 16:52:33 -07:00
self . send_event ( event ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-04 08:57:04 -07:00
async fn on_exec_command_end (
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
& self ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker : & mut TurnDiffTracker ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
sub_id : & str ,
call_id : & str ,
2025-08-03 11:33:44 -07:00
output : & ExecToolCallOutput ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
is_apply_patch : bool ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
) {
2025-08-03 11:33:44 -07:00
let ExecToolCallOutput {
stdout ,
stderr ,
2025-08-23 09:54:31 -07:00
aggregated_output ,
2025-08-03 11:33:44 -07:00
duration ,
exit_code ,
2025-09-14 14:38:26 -07:00
timed_out : _ ,
2025-08-03 11:33:44 -07:00
} = output ;
2025-08-23 09:54:31 -07:00
// Send full stdout/stderr to clients; do not truncate.
let stdout = stdout . text . clone ( ) ;
let stderr = stderr . text . clone ( ) ;
2025-08-22 16:32:31 -07:00
let formatted_output = format_exec_output_str ( output ) ;
2025-08-23 09:54:31 -07:00
let aggregated_output : String = aggregated_output . text . clone ( ) ;
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
let msg = if is_apply_patch {
EventMsg ::PatchApplyEnd ( PatchApplyEndEvent {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
call_id : call_id . to_string ( ) ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
stdout ,
stderr ,
2025-08-03 11:33:44 -07:00
success : * exit_code = = 0 ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
} )
} else {
EventMsg ::ExecCommandEnd ( ExecCommandEndEvent {
call_id : call_id . to_string ( ) ,
stdout ,
stderr ,
2025-08-23 09:54:31 -07:00
aggregated_output ,
2025-08-03 11:33:44 -07:00
exit_code : * exit_code ,
2025-08-23 09:54:31 -07:00
duration : * duration ,
formatted_output ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
} )
} ;
let event = Event {
id : sub_id . to_string ( ) ,
msg ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
2025-09-09 16:52:33 -07:00
self . send_event ( event ) . await ;
2025-08-04 08:57:04 -07:00
// If this is an apply_patch, after we emit the end patch, emit a second event
// with the full turn diff if there is one.
if is_apply_patch {
let unified_diff = turn_diff_tracker . get_unified_diff ( ) ;
if let Ok ( Some ( unified_diff ) ) = unified_diff {
let msg = EventMsg ::TurnDiff ( TurnDiffEvent { unified_diff } ) ;
let event = Event {
id : sub_id . into ( ) ,
msg ,
} ;
2025-09-09 16:52:33 -07:00
self . send_event ( event ) . await ;
2025-08-04 08:57:04 -07:00
}
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-06 23:25:56 -07:00
/// Runs the exec tool call and emits events for the begin and end of the
/// command even on error.
///
/// Returns the output of the exec tool call.
async fn run_exec_with_events < ' a > (
& self ,
turn_diff_tracker : & mut TurnDiffTracker ,
begin_ctx : ExecCommandContext ,
exec_args : ExecInvokeArgs < ' a > ,
) -> crate ::error ::Result < ExecToolCallOutput > {
let is_apply_patch = begin_ctx . apply_patch . is_some ( ) ;
let sub_id = begin_ctx . sub_id . clone ( ) ;
let call_id = begin_ctx . call_id . clone ( ) ;
self . on_exec_command_begin ( turn_diff_tracker , begin_ctx . clone ( ) )
. await ;
let result = process_exec_tool_call (
exec_args . params ,
exec_args . sandbox_type ,
exec_args . sandbox_policy ,
2025-09-18 14:37:06 -07:00
exec_args . sandbox_cwd ,
2025-08-06 23:25:56 -07:00
exec_args . codex_linux_sandbox_exe ,
exec_args . stdout_stream ,
)
. await ;
let output_stderr ;
let borrowed : & ExecToolCallOutput = match & result {
Ok ( output ) = > output ,
2025-09-14 14:38:26 -07:00
Err ( CodexErr ::Sandbox ( SandboxErr ::Timeout { output } ) ) = > output ,
2025-08-06 23:25:56 -07:00
Err ( e ) = > {
output_stderr = ExecToolCallOutput {
exit_code : - 1 ,
2025-08-11 11:52:05 -07:00
stdout : StreamOutput ::new ( String ::new ( ) ) ,
stderr : StreamOutput ::new ( get_error_message_ui ( e ) ) ,
2025-08-23 09:54:31 -07:00
aggregated_output : StreamOutput ::new ( get_error_message_ui ( e ) ) ,
2025-08-06 23:25:56 -07:00
duration : Duration ::default ( ) ,
2025-09-14 14:38:26 -07:00
timed_out : false ,
2025-08-06 23:25:56 -07:00
} ;
& output_stderr
}
} ;
self . on_exec_command_end (
turn_diff_tracker ,
& sub_id ,
& call_id ,
borrowed ,
is_apply_patch ,
)
. await ;
result
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
/// Helper that emits a BackgroundEvent with the given message. This keeps
/// the call‑ sites terse so adding more diagnostics does not clutter the
/// core agent logic.
async fn notify_background_event ( & self , sub_id : & str , message : impl Into < String > ) {
let event = Event {
id : sub_id . to_string ( ) ,
2025-05-13 20:44:42 -07:00
msg : EventMsg ::BackgroundEvent ( BackgroundEventEvent {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
message : message . into ( ) ,
2025-05-13 20:44:42 -07:00
} ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
2025-09-09 16:52:33 -07:00
self . send_event ( event ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-21 01:15:24 -07:00
async fn notify_stream_error ( & self , sub_id : & str , message : impl Into < String > ) {
let event = Event {
id : sub_id . to_string ( ) ,
msg : EventMsg ::StreamError ( StreamErrorEvent {
message : message . into ( ) ,
} ) ,
} ;
2025-09-09 16:52:33 -07:00
self . send_event ( event ) . await ;
2025-08-21 01:15:24 -07:00
}
2025-07-31 21:34:32 -07:00
/// Build the full turn input by concatenating the current conversation
/// history with additional items for this turn.
2025-09-18 18:21:52 +01:00
pub async fn turn_input_with_history ( & self , extra : Vec < ResponseItem > ) -> Vec < ResponseItem > {
let history = {
let state = self . state . lock ( ) . await ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state . history_snapshot ( )
2025-09-18 18:21:52 +01:00
} ;
[ history , extra ] . concat ( )
2025-07-31 21:34:32 -07:00
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
/// Returns the input if there was no task running to inject into
2025-09-18 18:21:52 +01:00
pub async fn inject_input ( & self , input : Vec < InputItem > ) -> Result < ( ) , Vec < InputItem > > {
2025-09-26 15:49:08 +02:00
let mut active = self . active_turn . lock ( ) . await ;
match active . as_mut ( ) {
Some ( at ) = > {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let mut ts = at . turn_state . lock ( ) . await ;
ts . push_pending_input ( input . into ( ) ) ;
2025-09-26 15:49:08 +02:00
Ok ( ( ) )
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
}
2025-09-26 15:49:08 +02:00
None = > Err ( input ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
2025-09-18 18:21:52 +01:00
pub async fn get_pending_input ( & self ) -> Vec < ResponseInputItem > {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let mut active = self . active_turn . lock ( ) . await ;
2025-09-26 15:49:08 +02:00
match active . as_mut ( ) {
Some ( at ) = > {
let mut ts = at . turn_state . lock ( ) . await ;
ts . take_pending_input ( )
}
None = > Vec ::with_capacity ( 0 ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
2025-05-06 16:21:35 -07:00
pub async fn call_tool (
& self ,
server : & str ,
tool : & str ,
arguments : Option < serde_json ::Value > ,
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
) -> anyhow ::Result < CallToolResult > {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
self . services
. mcp_connection_manager
2025-09-22 10:30:59 -07:00
. call_tool ( server , tool , arguments )
2025-05-06 16:21:35 -07:00
. await
}
2025-09-26 15:49:08 +02:00
pub async fn interrupt_task ( self : & Arc < Self > ) {
2025-08-17 21:40:31 -07:00
info! ( " interrupt received: abort current task, if any " ) ;
2025-09-26 15:49:08 +02:00
self . abort_all_tasks ( TurnAbortReason ::Interrupted ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
2025-09-18 18:21:52 +01:00
fn interrupt_task_sync ( & self ) {
2025-09-26 15:49:08 +02:00
if let Ok ( mut active ) = self . active_turn . try_lock ( )
& & let Some ( at ) = active . as_mut ( )
{
at . try_clear_pending_sync ( ) ;
let tasks = at . drain_tasks ( ) ;
* active = None ;
for ( _sub_id , task ) in tasks {
task . handle . abort ( ) ;
2025-09-18 18:21:52 +01:00
}
}
}
2025-09-23 07:25:46 -07:00
pub ( crate ) fn notifier ( & self ) -> & UserNotifier {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
& self . services . notifier
}
fn user_shell ( & self ) -> & shell ::Shell {
& self . services . user_shell
}
fn show_raw_agent_reasoning ( & self ) -> bool {
self . services . show_raw_agent_reasoning
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
impl Drop for Session {
fn drop ( & mut self ) {
2025-09-18 18:21:52 +01:00
self . interrupt_task_sync ( ) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
#[ derive(Clone, Debug) ]
pub ( crate ) struct ExecCommandContext {
pub ( crate ) sub_id : String ,
pub ( crate ) call_id : String ,
pub ( crate ) command_for_display : Vec < String > ,
pub ( crate ) cwd : PathBuf ,
pub ( crate ) apply_patch : Option < ApplyPatchCommandContext > ,
}
#[ derive(Clone, Debug) ]
pub ( crate ) struct ApplyPatchCommandContext {
pub ( crate ) user_explicitly_approved_this_action : bool ,
pub ( crate ) changes : HashMap < PathBuf , FileChange > ,
}
2025-08-15 09:40:02 -07:00
async fn submission_loop (
sess : Arc < Session > ,
turn_context : TurnContext ,
config : Arc < Config > ,
rx_sub : Receiver < Submission > ,
) {
// Wrap once to avoid cloning TurnContext for each task.
2025-08-18 12:59:19 -07:00
let mut turn_context = Arc ::new ( turn_context ) ;
chore: introduce ConversationManager as a clearinghouse for all conversations (#2240)
This PR does two things because after I got deep into the first one I
started pulling on the thread to the second:
- Makes `ConversationManager` the place where all in-memory
conversations are created and stored. Previously, `MessageProcessor` in
the `codex-mcp-server` crate was doing this via its `session_map`, but
this is something that should be done in `codex-core`.
- It unwinds the `ctrl_c: tokio::sync::Notify` that was threaded
throughout our code. I think this made sense at one time, but now that
we handle Ctrl-C within the TUI and have a proper `Op::Interrupt` event,
I don't think this was quite right, so I removed it. For `codex exec`
and `codex proto`, we now use `tokio::signal::ctrl_c()` directly, but we
no longer make `Notify` a field of `Codex` or `CodexConversation`.
Changes of note:
- Adds the files `conversation_manager.rs` and `codex_conversation.rs`
to `codex-core`.
- `Codex` and `CodexSpawnOk` are no longer exported from `codex-core`:
other crates must use `CodexConversation` instead (which is created via
`ConversationManager`).
- `core/src/codex_wrapper.rs` has been deleted in favor of
`ConversationManager`.
- `ConversationManager::new_conversation()` returns `NewConversation`,
which is in line with the `new_conversation` tool we want to add to the
MCP server. Note `NewConversation` includes `SessionConfiguredEvent`, so
we eliminate checks in cases like `codex-rs/core/tests/client.rs` to
verify `SessionConfiguredEvent` is the first event because that is now
internal to `ConversationManager`.
- Quite a bit of code was deleted from
`codex-rs/mcp-server/src/message_processor.rs` since it no longer has to
manage multiple conversations itself: it goes through
`ConversationManager` instead.
- `core/tests/live_agent.rs` has been deleted because I had to update a
bunch of tests and all the tests in here were ignored, and I don't think
anyone ever ran them, so this was just technical debt, at this point.
- Removed `notify_on_sigint()` from `util.rs` (and in a follow-up, I
hope to refactor the blandly-named `util.rs` into more descriptive
files).
- In general, I started replacing local variables named `codex` as
`conversation`, where appropriate, though admittedly I didn't do it
through all the integration tests because that would have added a lot of
noise to this PR.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2240).
* #2264
* #2263
* __->__ #2240
2025-08-13 13:38:18 -07:00
// To break out of this loop, send Op::Shutdown.
while let Ok ( sub ) = rx_sub . recv ( ) . await {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
debug! ( ? sub , " Submission " ) ;
match sub . op {
Op ::Interrupt = > {
2025-09-18 18:21:52 +01:00
sess . interrupt_task ( ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-18 12:59:19 -07:00
Op ::OverrideTurnContext {
cwd ,
approval_policy ,
sandbox_policy ,
model ,
effort ,
summary ,
} = > {
// Recalculate the persistent turn context with provided overrides.
let prev = Arc ::clone ( & turn_context ) ;
let provider = prev . client . get_provider ( ) ;
// Effective model + family
2025-09-10 13:53:46 -07:00
let ( effective_model , effective_family ) = if let Some ( ref m ) = model {
2025-08-18 12:59:19 -07:00
let fam =
2025-09-10 13:53:46 -07:00
find_family_for_model ( m ) . unwrap_or_else ( | | config . model_family . clone ( ) ) ;
( m . clone ( ) , fam )
2025-08-18 12:59:19 -07:00
} else {
( prev . client . get_model ( ) , prev . client . get_model_family ( ) )
} ;
// Effective reasoning settings
let effective_effort = effort . unwrap_or ( prev . client . get_reasoning_effort ( ) ) ;
let effective_summary = summary . unwrap_or ( prev . client . get_reasoning_summary ( ) ) ;
2025-08-22 13:10:11 -07:00
let auth_manager = prev . client . get_auth_manager ( ) ;
2025-08-18 12:59:19 -07:00
// Build updated config for the client
let mut updated_config = ( * config ) . clone ( ) ;
updated_config . model = effective_model . clone ( ) ;
updated_config . model_family = effective_family . clone ( ) ;
2025-08-27 00:04:21 -07:00
if let Some ( model_info ) = get_model_info ( & effective_family ) {
updated_config . model_context_window = Some ( model_info . context_window ) ;
}
2025-08-18 12:59:19 -07:00
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let otel_event_manager = prev . client . get_otel_event_manager ( ) . with_model (
updated_config . model . as_str ( ) ,
updated_config . model_family . slug . as_str ( ) ,
) ;
2025-08-18 12:59:19 -07:00
let client = ModelClient ::new (
Arc ::new ( updated_config ) ,
2025-08-22 13:10:11 -07:00
auth_manager ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager ,
2025-08-18 12:59:19 -07:00
provider ,
effective_effort ,
effective_summary ,
2025-09-07 20:22:25 -07:00
sess . conversation_id ,
2025-08-18 12:59:19 -07:00
) ;
let new_approval_policy = approval_policy . unwrap_or ( prev . approval_policy ) ;
let new_sandbox_policy = sandbox_policy
. clone ( )
. unwrap_or ( prev . sandbox_policy . clone ( ) ) ;
let new_cwd = cwd . clone ( ) . unwrap_or_else ( | | prev . cwd . clone ( ) ) ;
2025-08-24 22:43:42 -07:00
let tools_config = ToolsConfig ::new ( & ToolsConfigParams {
model_family : & effective_family ,
include_plan_tool : config . include_plan_tool ,
include_apply_patch_tool : config . include_apply_patch_tool ,
include_web_search_request : config . tools_web_search_request ,
use_streamable_shell_tool : config . use_experimental_streamable_shell_tool ,
2025-08-27 17:41:23 -07:00
include_view_image_tool : config . include_view_image_tool ,
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
experimental_unified_exec_tool : config . use_experimental_unified_exec_tool ,
2025-08-24 22:43:42 -07:00
} ) ;
2025-08-18 12:59:19 -07:00
let new_turn_context = TurnContext {
client ,
tools_config ,
user_instructions : prev . user_instructions . clone ( ) ,
base_instructions : prev . base_instructions . clone ( ) ,
approval_policy : new_approval_policy ,
sandbox_policy : new_sandbox_policy . clone ( ) ,
shell_environment_policy : prev . shell_environment_policy . clone ( ) ,
cwd : new_cwd . clone ( ) ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
is_review_mode : false ,
2025-09-23 13:59:16 -07:00
final_output_json_schema : None ,
2025-08-18 12:59:19 -07:00
} ;
// Install the new persistent context for subsequent tasks/turns.
turn_context = Arc ::new ( new_turn_context ) ;
2025-09-10 13:53:46 -07:00
// Optionally persist changes to model / effort
2025-08-18 12:59:19 -07:00
if cwd . is_some ( ) | | approval_policy . is_some ( ) | | sandbox_policy . is_some ( ) {
sess . record_conversation_items ( & [ ResponseItem ::from ( EnvironmentContext ::new (
2025-08-20 23:45:16 -07:00
cwd ,
approval_policy ,
sandbox_policy ,
// Shell is not configurable from turn to turn
None ,
2025-08-18 12:59:19 -07:00
) ) ] )
. await ;
}
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
Op ::UserInput { items } = > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
turn_context
. client
. get_otel_event_manager ( )
. user_prompt ( & items ) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
// attempt to inject input into current task
2025-09-18 18:21:52 +01:00
if let Err ( items ) = sess . inject_input ( items ) . await {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
// no current task, spawn a new one
2025-09-26 15:49:08 +02:00
sess . spawn_task ( Arc ::clone ( & turn_context ) , sub . id , items , RegularTask )
. await ;
2025-08-15 09:56:05 -07:00
}
}
Op ::UserTurn {
items ,
cwd ,
approval_policy ,
sandbox_policy ,
model ,
effort ,
summary ,
2025-09-23 13:59:16 -07:00
final_output_json_schema ,
2025-08-15 09:56:05 -07:00
} = > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
turn_context
. client
. get_otel_event_manager ( )
. user_prompt ( & items ) ;
2025-08-15 09:56:05 -07:00
// attempt to inject input into current task
2025-09-18 18:21:52 +01:00
if let Err ( items ) = sess . inject_input ( items ) . await {
2025-08-15 09:56:05 -07:00
// Derive a fresh TurnContext for this turn using the provided overrides.
let provider = turn_context . client . get_provider ( ) ;
2025-08-25 15:57:20 -07:00
let auth_manager = turn_context . client . get_auth_manager ( ) ;
2025-08-15 09:56:05 -07:00
// Derive a model family for the requested model; fall back to the session's.
let model_family = find_family_for_model ( & model )
. unwrap_or_else ( | | config . model_family . clone ( ) ) ;
// Create a per‑ turn Config clone with the requested model/family.
let mut per_turn_config = ( * config ) . clone ( ) ;
per_turn_config . model = model . clone ( ) ;
per_turn_config . model_family = model_family . clone ( ) ;
2025-08-27 00:04:21 -07:00
if let Some ( model_info ) = get_model_info ( & model_family ) {
per_turn_config . model_context_window = Some ( model_info . context_window ) ;
}
2025-08-15 09:56:05 -07:00
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let otel_event_manager =
turn_context . client . get_otel_event_manager ( ) . with_model (
per_turn_config . model . as_str ( ) ,
per_turn_config . model_family . slug . as_str ( ) ,
) ;
2025-08-15 09:56:05 -07:00
// Build a new client with per‑ turn reasoning settings.
// Reuse the same provider and session id; auth defaults to env/API key.
let client = ModelClient ::new (
Arc ::new ( per_turn_config ) ,
2025-08-25 15:57:20 -07:00
auth_manager ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager ,
2025-08-15 09:56:05 -07:00
provider ,
2025-08-18 11:50:17 -07:00
effort ,
summary ,
2025-09-07 20:22:25 -07:00
sess . conversation_id ,
2025-08-15 09:56:05 -07:00
) ;
let fresh_turn_context = TurnContext {
client ,
2025-08-24 22:43:42 -07:00
tools_config : ToolsConfig ::new ( & ToolsConfigParams {
model_family : & model_family ,
include_plan_tool : config . include_plan_tool ,
include_apply_patch_tool : config . include_apply_patch_tool ,
include_web_search_request : config . tools_web_search_request ,
use_streamable_shell_tool : config
. use_experimental_streamable_shell_tool ,
2025-08-27 17:41:23 -07:00
include_view_image_tool : config . include_view_image_tool ,
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
experimental_unified_exec_tool : config
. use_experimental_unified_exec_tool ,
2025-08-24 22:43:42 -07:00
} ) ,
2025-08-15 09:56:05 -07:00
user_instructions : turn_context . user_instructions . clone ( ) ,
base_instructions : turn_context . base_instructions . clone ( ) ,
approval_policy ,
sandbox_policy ,
shell_environment_policy : turn_context . shell_environment_policy . clone ( ) ,
cwd ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
is_review_mode : false ,
2025-09-23 13:59:16 -07:00
final_output_json_schema ,
2025-08-15 09:56:05 -07:00
} ;
2025-09-16 11:32:20 -07:00
// if the environment context has changed, record it in the conversation history
let previous_env_context = EnvironmentContext ::from ( turn_context . as_ref ( ) ) ;
let new_env_context = EnvironmentContext ::from ( & fresh_turn_context ) ;
if ! new_env_context . equals_except_shell ( & previous_env_context ) {
sess . record_conversation_items ( & [ ResponseItem ::from ( new_env_context ) ] )
. await ;
}
// Install the new persistent context for subsequent tasks/turns.
turn_context = Arc ::new ( fresh_turn_context ) ;
2025-09-26 15:49:08 +02:00
// no current task, spawn a new one with the per-turn context
sess . spawn_task ( Arc ::clone ( & turn_context ) , sub . id , items , RegularTask )
. await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
Op ::ExecApproval { id , decision } = > match decision {
ReviewDecision ::Abort = > {
2025-09-18 18:21:52 +01:00
sess . interrupt_task ( ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-09-18 18:21:52 +01:00
other = > sess . notify_approval ( & id , other ) . await ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
} ,
Op ::PatchApproval { id , decision } = > match decision {
ReviewDecision ::Abort = > {
2025-09-18 18:21:52 +01:00
sess . interrupt_task ( ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-09-18 18:21:52 +01:00
other = > sess . notify_approval ( & id , other ) . await ,
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
} ,
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
Op ::AddToHistory { text } = > {
2025-09-07 20:22:25 -07:00
let id = sess . conversation_id ;
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
let config = config . clone ( ) ;
tokio ::spawn ( async move {
if let Err ( e ) = crate ::message_history ::append_entry ( & text , & id , & config ) . await
{
2025-06-26 14:40:42 -04:00
warn! ( " failed to append to message history: {e} " ) ;
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
}
} ) ;
}
Op ::GetHistoryEntryRequest { offset , log_id } = > {
let config = config . clone ( ) ;
2025-09-09 16:52:33 -07:00
let sess_clone = sess . clone ( ) ;
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
let sub_id = sub . id . clone ( ) ;
tokio ::spawn ( async move {
// Run lookup in blocking thread because it does file IO + locking.
let entry_opt = tokio ::task ::spawn_blocking ( move | | {
crate ::message_history ::lookup ( log_id , offset , & config )
} )
. await
. unwrap_or ( None ) ;
let event = Event {
id : sub_id ,
msg : EventMsg ::GetHistoryEntryResponse (
crate ::protocol ::GetHistoryEntryResponseEvent {
offset ,
log_id ,
2025-08-15 12:44:40 -07:00
entry : entry_opt . map ( | e | {
codex_protocol ::message_history ::HistoryEntry {
2025-09-07 20:22:25 -07:00
conversation_id : e . session_id ,
2025-08-15 12:44:40 -07:00
ts : e . ts ,
text : e . text ,
}
} ) ,
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
} ,
) ,
} ;
2025-09-09 16:52:33 -07:00
sess_clone . send_event ( event ) . await ;
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
} ) ;
}
2025-08-19 09:00:31 -07:00
Op ::ListMcpTools = > {
let sub_id = sub . id . clone ( ) ;
// This is a cheap lookup from the connection manager's cache.
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let tools = sess . services . mcp_connection_manager . list_all_tools ( ) ;
2025-08-19 09:00:31 -07:00
let event = Event {
id : sub_id ,
msg : EventMsg ::McpListToolsResponse (
crate ::protocol ::McpListToolsResponseEvent { tools } ,
) ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-19 09:00:31 -07:00
}
2025-08-28 19:16:39 -07:00
Op ::ListCustomPrompts = > {
let sub_id = sub . id . clone ( ) ;
let custom_prompts : Vec < CustomPrompt > =
if let Some ( dir ) = crate ::custom_prompts ::default_prompts_dir ( ) {
crate ::custom_prompts ::discover_prompts_in ( & dir ) . await
} else {
Vec ::new ( )
} ;
let event = Event {
id : sub_id ,
msg : EventMsg ::ListCustomPromptsResponse ( ListCustomPromptsResponseEvent {
custom_prompts ,
} ) ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-28 19:16:39 -07:00
}
2025-07-31 21:34:32 -07:00
Op ::Compact = > {
// Attempt to inject input into current task
2025-09-18 18:21:52 +01:00
if let Err ( items ) = sess
. inject_input ( vec! [ InputItem ::Text {
2025-09-23 17:59:17 +01:00
text : compact ::SUMMARIZATION_PROMPT . to_string ( ) ,
2025-09-18 18:21:52 +01:00
} ] )
. await
{
2025-09-26 15:49:08 +02:00
sess . spawn_task ( Arc ::clone ( & turn_context ) , sub . id , items , CompactTask )
. await ;
2025-07-31 21:34:32 -07:00
}
}
2025-07-23 15:03:26 -07:00
Op ::Shutdown = > {
2025-09-26 15:49:08 +02:00
sess . abort_all_tasks ( TurnAbortReason ::Interrupted ) . await ;
2025-07-23 15:03:26 -07:00
info! ( " Shutting down Codex instance " ) ;
// Gracefully flush and shutdown rollout recorder on session end so tests
// that inspect the rollout file do not race with the background writer.
2025-09-18 18:21:52 +01:00
let recorder_opt = {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let mut guard = sess . services . rollout . lock ( ) . await ;
2025-09-18 18:21:52 +01:00
guard . take ( )
} ;
2025-08-19 13:22:02 -07:00
if let Some ( rec ) = recorder_opt
& & let Err ( e ) = rec . shutdown ( ) . await
{
warn! ( " failed to shutdown rollout recorder: {e} " ) ;
let event = Event {
id : sub . id . clone ( ) ,
msg : EventMsg ::Error ( ErrorEvent {
message : " Failed to shutdown rollout recorder " . to_string ( ) ,
} ) ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-07-23 15:03:26 -07:00
}
exploration: create Session as part of Codex::spawn() (#2291)
Historically, `Codex::spawn()` would create the instance of `Codex` and
enforce, by construction, that `Op::ConfigureSession` was the first `Op`
submitted via `submit()`. Then over in `submission_loop()`, it would
handle the case for taking the parameters of `Op::ConfigureSession` and
turning it into a `Session`.
This approach has two challenges from a state management perspective:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L718
- The local `sess` variable in `submission_loop()` has to be `mut` and
`Option<Arc<Session>>` because it is not invariant that a `Session` is
present for the lifetime of the loop, so there is a lot of logic to deal
with the case where `sess` is `None` (e.g., the `send_no_session_event`
function and all of its callsites).
- `submission_loop()` is written in such a way that
`Op::ConfigureSession` could be observed multiple times, but in
practice, it is only observed exactly once at the start of the loop.
In this PR, we try to simplify the state management by _removing_ the
`Op::ConfigureSession` enum variant and constructing the `Session` as
part of `Codex::spawn()` so that it can be passed to `submission_loop()`
as `Arc<Session>`. The original logic from the `Op::ConfigureSession`
has largely been moved to the new `Session::new()` constructor.
---
Incidentally, I also noticed that the handling of `Op::ConfigureSession`
can result in events being dispatched in addition to
`EventMsg::SessionConfigured`, as an `EventMsg::Error` is created for
every MCP initialization error, so it is important to preserve that
behavior:
https://github.com/openai/codex/blob/f968a1327ad39a7786759ea8f1d1c088fe41e91b/codex-rs/core/src/codex.rs#L901-L916
Though admittedly, I believe this does not play nice with #2264, as
these error messages will likely be dispatched before the client has a
chance to call `addConversationListener`, so we likely need to make it
so `newConversation` automatically creates the subscription, but we must
also guarantee that the "ack" from `newConversation` is returned before
any other conversation-related notifications are sent so the client
knows what `conversation_id` to match on.
2025-08-14 09:55:28 -07:00
2025-07-23 15:03:26 -07:00
let event = Event {
id : sub . id . clone ( ) ,
msg : EventMsg ::ShutdownComplete ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-07-23 15:03:26 -07:00
break ;
}
2025-09-10 17:42:54 -07:00
Op ::GetPath = > {
2025-08-22 17:06:09 -07:00
let sub_id = sub . id . clone ( ) ;
2025-09-10 17:42:54 -07:00
// Flush rollout writes before returning the path so readers observe a consistent file.
let ( path , rec_opt ) = {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let guard = sess . services . rollout . lock ( ) . await ;
2025-09-10 17:42:54 -07:00
match guard . as_ref ( ) {
Some ( rec ) = > ( rec . get_rollout_path ( ) , Some ( rec . clone ( ) ) ) ,
None = > {
error! ( " rollout recorder not found " ) ;
continue ;
}
}
} ;
if let Some ( rec ) = rec_opt
& & let Err ( e ) = rec . flush ( ) . await
{
warn! ( " failed to flush rollout recorder before GetHistory: {e} " ) ;
}
2025-08-22 17:06:09 -07:00
let event = Event {
id : sub_id . clone ( ) ,
2025-09-10 17:42:54 -07:00
msg : EventMsg ::ConversationPath ( ConversationPathResponseEvent {
2025-09-07 20:22:25 -07:00
conversation_id : sess . conversation_id ,
2025-09-10 17:42:54 -07:00
path ,
2025-08-22 17:06:09 -07:00
} ) ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-22 17:06:09 -07:00
}
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
Op ::Review { review_request } = > {
spawn_review_thread (
sess . clone ( ) ,
config . clone ( ) ,
turn_context . clone ( ) ,
sub . id ,
review_request ,
)
. await ;
}
2025-08-15 12:44:40 -07:00
_ = > {
// Ignore unknown ops; enum is non_exhaustive to allow extensions.
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
debug! ( " Agent loop exited " ) ;
}
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
/// Spawn a review thread using the given prompt.
async fn spawn_review_thread (
sess : Arc < Session > ,
config : Arc < Config > ,
parent_turn_context : Arc < TurnContext > ,
sub_id : String ,
review_request : ReviewRequest ,
) {
let model = config . review_model . clone ( ) ;
let review_model_family = find_family_for_model ( & model )
. unwrap_or_else ( | | parent_turn_context . client . get_model_family ( ) ) ;
let tools_config = ToolsConfig ::new ( & ToolsConfigParams {
model_family : & review_model_family ,
include_plan_tool : false ,
include_apply_patch_tool : config . include_apply_patch_tool ,
include_web_search_request : false ,
use_streamable_shell_tool : false ,
include_view_image_tool : false ,
experimental_unified_exec_tool : config . use_experimental_unified_exec_tool ,
} ) ;
2025-09-16 13:36:51 -07:00
let base_instructions = REVIEW_PROMPT . to_string ( ) ;
let review_prompt = review_request . prompt . clone ( ) ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
let provider = parent_turn_context . client . get_provider ( ) ;
let auth_manager = parent_turn_context . client . get_auth_manager ( ) ;
let model_family = review_model_family . clone ( ) ;
// Build per‑ turn client with the requested model/family.
let mut per_turn_config = ( * config ) . clone ( ) ;
per_turn_config . model = model . clone ( ) ;
per_turn_config . model_family = model_family . clone ( ) ;
2025-09-16 13:36:51 -07:00
per_turn_config . model_reasoning_effort = Some ( ReasoningEffortConfig ::Low ) ;
per_turn_config . model_reasoning_summary = ReasoningSummaryConfig ::Detailed ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
if let Some ( model_info ) = get_model_info ( & model_family ) {
per_turn_config . model_context_window = Some ( model_info . context_window ) ;
}
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let otel_event_manager = parent_turn_context
. client
. get_otel_event_manager ( )
. with_model (
per_turn_config . model . as_str ( ) ,
per_turn_config . model_family . slug . as_str ( ) ,
) ;
2025-09-16 13:36:51 -07:00
let per_turn_config = Arc ::new ( per_turn_config ) ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
let client = ModelClient ::new (
2025-09-16 13:36:51 -07:00
per_turn_config . clone ( ) ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
auth_manager ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
provider ,
2025-09-16 13:36:51 -07:00
per_turn_config . model_reasoning_effort ,
per_turn_config . model_reasoning_summary ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
sess . conversation_id ,
) ;
let review_turn_context = TurnContext {
client ,
tools_config ,
user_instructions : None ,
2025-09-16 13:36:51 -07:00
base_instructions : Some ( base_instructions . clone ( ) ) ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
approval_policy : parent_turn_context . approval_policy ,
sandbox_policy : parent_turn_context . sandbox_policy . clone ( ) ,
shell_environment_policy : parent_turn_context . shell_environment_policy . clone ( ) ,
cwd : parent_turn_context . cwd . clone ( ) ,
is_review_mode : true ,
2025-09-23 13:59:16 -07:00
final_output_json_schema : None ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
} ;
// Seed the child task with the review prompt as the initial user message.
let input : Vec < InputItem > = vec! [ InputItem ::Text {
2025-09-16 13:36:51 -07:00
text : format ! ( " {base_instructions} \n \n --- \n \n Now, here's your task: {review_prompt} " ) ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
} ] ;
let tc = Arc ::new ( review_turn_context ) ;
// Clone sub_id for the upcoming announcement before moving it into the task.
let sub_id_for_event = sub_id . clone ( ) ;
2025-09-26 15:49:08 +02:00
sess . spawn_task ( tc . clone ( ) , sub_id , input , ReviewTask ) . await ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
// Announce entering review mode so UIs can switch modes.
sess . send_event ( Event {
id : sub_id_for_event ,
msg : EventMsg ::EnteredReviewMode ( review_request ) ,
} )
. await ;
}
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
/// Takes a user message as input and runs a loop where, at each turn, the model
/// replies with either:
///
/// - requested function calls
/// - an assistant message
///
/// While it is possible for the model to return multiple of these items in a
/// single turn, in practice, we generally one item per turn:
///
/// - If the model requests a function call, we execute it and send the output
/// back to the model in the next turn.
/// - If the model sends only an assistant message, we record it in the
/// conversation history and consider the task complete.
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
///
/// Review mode: when `turn_context.is_review_mode` is true, the turn runs in an
/// isolated in-memory thread without the parent session's prior history or
/// user_instructions. Emits ExitedReviewMode upon final review message.
2025-09-26 15:49:08 +02:00
pub ( crate ) async fn run_task (
2025-08-15 09:40:02 -07:00
sess : Arc < Session > ,
2025-09-12 13:07:10 -07:00
turn_context : Arc < TurnContext > ,
2025-08-15 09:40:02 -07:00
sub_id : String ,
input : Vec < InputItem > ,
2025-09-26 15:49:08 +02:00
) -> Option < String > {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
if input . is_empty ( ) {
2025-09-26 15:49:08 +02:00
return None ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
let event = Event {
id : sub_id . clone ( ) ,
2025-08-27 00:04:21 -07:00
msg : EventMsg ::TaskStarted ( TaskStartedEvent {
model_context_window : turn_context . client . get_model_context_window ( ) ,
} ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
2025-07-31 21:34:32 -07:00
let initial_input_for_turn : ResponseInputItem = ResponseInputItem ::from ( input ) ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
// For review threads, keep an isolated in-memory history so the
// model sees a fresh conversation without the parent session's history.
// For normal turns, continue recording to the session history as before.
let is_review_mode = turn_context . is_review_mode ;
let mut review_thread_history : Vec < ResponseItem > = Vec ::new ( ) ;
if is_review_mode {
2025-09-16 13:36:51 -07:00
// Seed review threads with environment context so the model knows the working directory.
review_thread_history . extend ( sess . build_initial_context ( turn_context . as_ref ( ) ) ) ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
review_thread_history . push ( initial_input_for_turn . into ( ) ) ;
} else {
sess . record_input_and_rollout_usermsg ( & initial_input_for_turn )
. await ;
}
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
2025-08-08 18:21:19 -07:00
let mut last_agent_message : Option < String > = None ;
2025-08-04 08:57:04 -07:00
// Although from the perspective of codex.rs, TurnDiffTracker has the lifecycle of a Task which contains
// many turns, from the perspective of the user, it is a single turn.
let mut turn_diff_tracker = TurnDiffTracker ::new ( ) ;
2025-09-12 13:07:10 -07:00
let mut auto_compact_recently_attempted = false ;
2025-08-04 08:57:04 -07:00
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
loop {
2025-04-25 12:08:18 -07:00
// Note that pending_input would be something like a message the user
// submitted through the UI while the model was running. Though the UI
// may support this, the model might not.
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
let pending_input = sess
. get_pending_input ( )
2025-09-18 18:21:52 +01:00
. await
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
. into_iter ( )
. map ( ResponseItem ::from )
. collect ::< Vec < ResponseItem > > ( ) ;
2025-05-08 21:46:06 -07:00
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
// Construct the input that we will send to the model.
//
// - For review threads, use the isolated in-memory history so the
// model sees a fresh conversation (no parent history/user_instructions).
//
// - For normal turns, use the session's full history. When using the
// chat completions API (or ZDR clients), the model needs the full
// conversation history on each turn. The rollout file, however, should
// only record the new items that originated in this turn so that it
// represents an append-only log without duplicates.
let turn_input : Vec < ResponseItem > = if is_review_mode {
if ! pending_input . is_empty ( ) {
review_thread_history . extend ( pending_input ) ;
}
review_thread_history . clone ( )
} else {
sess . record_conversation_items ( & pending_input ) . await ;
2025-09-18 18:21:52 +01:00
sess . turn_input_with_history ( pending_input ) . await
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
} ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
let turn_input_messages : Vec < String > = turn_input
. iter ( )
. filter_map ( | item | match item {
ResponseItem ::Message { content , .. } = > Some ( content ) ,
_ = > None ,
} )
. flat_map ( | content | {
content . iter ( ) . filter_map ( | item | match item {
ContentItem ::OutputText { text } = > Some ( text . clone ( ) ) ,
_ = > None ,
} )
} )
. collect ( ) ;
2025-08-15 09:40:02 -07:00
match run_turn (
& sess ,
2025-09-12 13:07:10 -07:00
turn_context . as_ref ( ) ,
2025-08-15 09:40:02 -07:00
& mut turn_diff_tracker ,
sub_id . clone ( ) ,
turn_input ,
)
. await
{
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
Ok ( turn_output ) = > {
2025-09-12 13:07:10 -07:00
let TurnRunResult {
processed_items ,
total_token_usage ,
} = turn_output ;
let limit = turn_context
. client
. get_auto_compact_token_limit ( )
. unwrap_or ( i64 ::MAX ) ;
let total_usage_tokens = total_token_usage
. as_ref ( )
2025-09-22 20:30:16 +01:00
. map ( TokenUsage ::tokens_in_context_window ) ;
2025-09-12 13:07:10 -07:00
let token_limit_reached = total_usage_tokens
. map ( | tokens | ( tokens as i64 ) > = limit )
. unwrap_or ( false ) ;
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
let mut items_to_record_in_conversation_history = Vec ::< ResponseItem > ::new ( ) ;
let mut responses = Vec ::< ResponseInputItem > ::new ( ) ;
2025-09-12 13:07:10 -07:00
for processed_response_item in processed_items {
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
let ProcessedResponseItem { item , response } = processed_response_item ;
match ( & item , & response ) {
( ResponseItem ::Message { role , .. } , None ) if role = = " assistant " = > {
// If the model returned a message, we need to record it.
items_to_record_in_conversation_history . push ( item ) ;
}
(
ResponseItem ::LocalShellCall { .. } ,
Some ( ResponseInputItem ::FunctionCallOutput { call_id , output } ) ,
) = > {
items_to_record_in_conversation_history . push ( item ) ;
items_to_record_in_conversation_history . push (
ResponseItem ::FunctionCallOutput {
call_id : call_id . clone ( ) ,
output : output . clone ( ) ,
} ,
) ;
}
(
ResponseItem ::FunctionCall { .. } ,
Some ( ResponseInputItem ::FunctionCallOutput { call_id , output } ) ,
) = > {
items_to_record_in_conversation_history . push ( item ) ;
items_to_record_in_conversation_history . push (
ResponseItem ::FunctionCallOutput {
call_id : call_id . clone ( ) ,
output : output . clone ( ) ,
} ,
) ;
}
2025-08-22 13:42:34 -07:00
(
ResponseItem ::CustomToolCall { .. } ,
Some ( ResponseInputItem ::CustomToolCallOutput { call_id , output } ) ,
) = > {
items_to_record_in_conversation_history . push ( item ) ;
items_to_record_in_conversation_history . push (
ResponseItem ::CustomToolCallOutput {
call_id : call_id . clone ( ) ,
output : output . clone ( ) ,
} ,
) ;
}
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
(
ResponseItem ::FunctionCall { .. } ,
Some ( ResponseInputItem ::McpToolCallOutput { call_id , result } ) ,
) = > {
items_to_record_in_conversation_history . push ( item ) ;
2025-08-22 14:10:18 -07:00
let output = match result {
Ok ( call_tool_result ) = > {
convert_call_tool_result_to_function_call_output_payload (
call_tool_result ,
)
}
Err ( err ) = > FunctionCallOutputPayload {
content : err . clone ( ) ,
success : Some ( false ) ,
2025-07-19 00:09:34 -04:00
} ,
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
} ;
items_to_record_in_conversation_history . push (
ResponseItem ::FunctionCallOutput {
call_id : call_id . clone ( ) ,
2025-08-22 14:10:18 -07:00
output ,
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
} ,
) ;
}
2025-07-23 10:37:45 -07:00
(
ResponseItem ::Reasoning {
id ,
summary ,
2025-08-05 01:56:13 -07:00
content ,
2025-07-23 10:37:45 -07:00
encrypted_content ,
} ,
None ,
) = > {
items_to_record_in_conversation_history . push ( ResponseItem ::Reasoning {
id : id . clone ( ) ,
summary : summary . clone ( ) ,
2025-08-05 01:56:13 -07:00
content : content . clone ( ) ,
2025-07-23 10:37:45 -07:00
encrypted_content : encrypted_content . clone ( ) ,
} ) ;
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
}
_ = > {
warn! ( " Unexpected response item: {item:?} with response: {response:?} " ) ;
}
} ;
if let Some ( response ) = response {
responses . push ( response ) ;
}
}
2025-04-25 12:08:18 -07:00
// Only attempt to take the lock if there is something to record.
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
if ! items_to_record_in_conversation_history . is_empty ( ) {
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
if is_review_mode {
review_thread_history
. extend ( items_to_record_in_conversation_history . clone ( ) ) ;
} else {
sess . record_conversation_items ( & items_to_record_in_conversation_history )
. await ;
}
2025-04-25 12:08:18 -07:00
}
2025-09-12 13:07:10 -07:00
if token_limit_reached {
if auto_compact_recently_attempted {
let limit_str = limit . to_string ( ) ;
let current_tokens = total_usage_tokens
. map ( | tokens | tokens . to_string ( ) )
. unwrap_or_else ( | | " unknown " . to_string ( ) ) ;
let event = Event {
id : sub_id . clone ( ) ,
msg : EventMsg ::Error ( ErrorEvent {
message : format ! (
" Conversation is still above the token limit after automatic summarization (limit {limit_str}, current {current_tokens}). Please start a new session or trim your input. "
) ,
} ) ,
} ;
sess . send_event ( event ) . await ;
break ;
}
auto_compact_recently_attempted = true ;
compact ::run_inline_auto_compact_task ( sess . clone ( ) , turn_context . clone ( ) ) . await ;
continue ;
}
auto_compact_recently_attempted = false ;
2025-04-25 12:08:18 -07:00
if responses . is_empty ( ) {
fix: chat completions API now also passes tools along (#1167)
Prior to this PR, there were two big misses in `chat_completions.rs`:
1. The loop in `stream_chat_completions()` was only including items of
type `ResponseItem::Message` when building up the `"messages"` JSON for
the `POST` request to the `chat/completions` endpoint. This fixes things
by ensuring other variants (`FunctionCall`, `LocalShellCall`, and
`FunctionCallOutput`) are included, as well.
2. In `process_chat_sse()`, we were not recording tool calls and were
only emitting items of type
`ResponseEvent::OutputItemDone(ResponseItem::Message)` to the stream.
Now we introduce `FunctionCallState`, which is used to accumulate the
`delta`s of type `tool_calls`, so we can ultimately emit a
`ResponseItem::FunctionCall`, when appropriate.
While function calling now appears to work for chat completions with my
local testing, I believe that there are still edge cases that are not
covered and that this codepath would benefit from a battery of
integration tests. (As part of that further cleanup, we should also work
to support streaming responses in the UI.)
The other important part of this PR is some cleanup in
`core/src/codex.rs`. In particular, it was hard to reason about how
`run_task()` was building up the list of messages to include in a
request across the various cases:
- Responses API
- Chat Completions API
- Responses API used in concert with ZDR
I like to think things are a bit cleaner now where:
- `zdr_transcript` (if present) contains all messages in the history of
the conversation, which includes function call outputs that have not
been sent back to the model yet
- `pending_input` includes any messages the user has submitted while the
turn is in flight that need to be injected as part of the next `POST` to
the model
- `input_for_next_turn` includes the tool call outputs that have not
been sent back to the model yet
2025-06-02 13:47:51 -07:00
last_agent_message = get_last_assistant_message_from_turn (
& items_to_record_in_conversation_history ,
) ;
2025-09-23 07:25:46 -07:00
sess . notifier ( )
. notify ( & UserNotification ::AgentTurnComplete {
turn_id : sub_id . clone ( ) ,
input_messages : turn_input_messages ,
last_assistant_message : last_agent_message . clone ( ) ,
} ) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
break ;
}
2025-09-12 13:07:10 -07:00
continue ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
Err ( e ) = > {
info! ( " Turn error: {e:#} " ) ;
let event = Event {
id : sub_id . clone ( ) ,
2025-05-13 20:44:42 -07:00
msg : EventMsg ::Error ( ErrorEvent {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
message : e . to_string ( ) ,
2025-05-13 20:44:42 -07:00
} ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-08 18:21:19 -07:00
// let the user continue the conversation
break ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
}
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
// If this was a review thread and we have a final assistant message,
// try to parse it as a ReviewOutput.
//
// If parsing fails, construct a minimal ReviewOutputEvent using the plain
// text as the overall explanation. Else, just exit review mode with None.
//
// Emits an ExitedReviewMode event with the parsed review output.
if turn_context . is_review_mode {
exit_review_mode (
sess . clone ( ) ,
sub_id . clone ( ) ,
last_agent_message . as_deref ( ) . map ( parse_review_output_event ) ,
)
. await ;
}
2025-09-26 15:49:08 +02:00
last_agent_message
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
/// Parse the review output; when not valid JSON, build a structured
/// fallback that carries the plain text as the overall explanation.
///
/// Returns: a ReviewOutputEvent parsed from JSON or a fallback populated from text.
fn parse_review_output_event ( text : & str ) -> ReviewOutputEvent {
// Try direct parse first
if let Ok ( ev ) = serde_json ::from_str ::< ReviewOutputEvent > ( text ) {
return ev ;
}
// If wrapped in markdown fences or extra prose, attempt to extract the first JSON object
if let ( Some ( start ) , Some ( end ) ) = ( text . find ( '{' ) , text . rfind ( '}' ) )
& & start < end
& & let Some ( slice ) = text . get ( start ..= end )
& & let Ok ( ev ) = serde_json ::from_str ::< ReviewOutputEvent > ( slice )
{
return ev ;
}
// Not JSON – return a structured ReviewOutputEvent that carries
// the plain text as the overall explanation.
ReviewOutputEvent {
overall_explanation : text . to_string ( ) ,
.. Default ::default ( )
}
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
async fn run_turn (
sess : & Session ,
2025-08-15 09:40:02 -07:00
turn_context : & TurnContext ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker : & mut TurnDiffTracker ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
sub_id : String ,
2025-04-25 12:08:18 -07:00
input : Vec < ResponseItem > ,
2025-09-12 13:07:10 -07:00
) -> CodexResult < TurnRunResult > {
2025-08-05 19:27:52 -07:00
let tools = get_openai_tools (
2025-08-15 09:40:02 -07:00
& turn_context . tools_config ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
Some ( sess . services . mcp_connection_manager . list_all_tools ( ) ) ,
2025-08-05 19:27:52 -07:00
) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let prompt = Prompt {
input ,
2025-08-05 19:27:52 -07:00
tools ,
2025-08-15 09:40:02 -07:00
base_instructions_override : turn_context . base_instructions . clone ( ) ,
2025-09-23 13:59:16 -07:00
output_schema : turn_context . final_output_json_schema . clone ( ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} ;
let mut retries = 0 ;
loop {
2025-08-15 09:40:02 -07:00
match try_run_turn ( sess , turn_context , turn_diff_tracker , & sub_id , & prompt ) . await {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
Ok ( output ) = > return Ok ( output ) ,
Err ( CodexErr ::Interrupted ) = > return Err ( CodexErr ::Interrupted ) ,
2025-05-08 21:46:06 -07:00
Err ( CodexErr ::EnvVar ( var ) ) = > return Err ( CodexErr ::EnvVar ( var ) ) ,
2025-09-23 15:56:34 -07:00
Err ( CodexErr ::UsageLimitReached ( e ) ) = > {
let rate_limits = e . rate_limits . clone ( ) ;
if let Some ( rate_limits ) = rate_limits {
sess . update_rate_limits ( & sub_id , rate_limits ) . await ;
}
return Err ( CodexErr ::UsageLimitReached ( e ) ) ;
2025-08-07 18:24:34 -07:00
}
2025-09-23 15:56:34 -07:00
Err ( CodexErr ::UsageNotIncluded ) = > return Err ( CodexErr ::UsageNotIncluded ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
Err ( e ) = > {
2025-07-18 12:12:39 -07:00
// Use the configured provider-specific stream retry budget.
2025-08-15 09:40:02 -07:00
let max_retries = turn_context . client . get_provider ( ) . stream_max_retries ( ) ;
2025-07-18 12:12:39 -07:00
if retries < max_retries {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
retries + = 1 ;
2025-08-13 15:43:54 -07:00
let delay = match e {
CodexErr ::Stream ( _ , Some ( delay ) ) = > delay ,
_ = > backoff ( retries ) ,
} ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
warn! (
2025-07-18 12:12:39 -07:00
" stream disconnected - retrying turn ({retries}/{max_retries} in {delay:?})... " ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
) ;
// Surface retry information to any UI/front‑ end so the
// user understands what is happening instead of staring
// at a seemingly frozen screen.
2025-08-21 01:15:24 -07:00
sess . notify_stream_error (
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
& sub_id ,
format! (
2025-07-18 12:12:39 -07:00
" stream error: {e}; retrying {retries}/{max_retries} in {delay:?}… "
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
) ,
)
. await ;
tokio ::time ::sleep ( delay ) . await ;
} else {
return Err ( e ) ;
}
}
}
}
}
2025-04-25 12:08:18 -07:00
/// When the model is prompted, it returns a stream of events. Some of these
/// events map to a `ResponseItem`. A `ResponseItem` may need to be
/// "handled" such that it produces a `ResponseInputItem` that needs to be
/// sent back to the model on the next turn.
2025-06-26 14:40:42 -04:00
#[ derive(Debug) ]
2025-04-25 12:08:18 -07:00
struct ProcessedResponseItem {
item : ResponseItem ,
response : Option < ResponseInputItem > ,
}
2025-09-12 13:07:10 -07:00
#[ derive(Debug) ]
struct TurnRunResult {
processed_items : Vec < ProcessedResponseItem > ,
total_token_usage : Option < TokenUsage > ,
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
async fn try_run_turn (
sess : & Session ,
2025-08-15 09:40:02 -07:00
turn_context : & TurnContext ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker : & mut TurnDiffTracker ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
sub_id : & str ,
prompt : & Prompt ,
2025-09-12 13:07:10 -07:00
) -> CodexResult < TurnRunResult > {
2025-06-26 14:40:42 -04:00
// call_ids that are part of this response.
let completed_call_ids = prompt
. input
. iter ( )
. filter_map ( | ri | match ri {
ResponseItem ::FunctionCallOutput { call_id , .. } = > Some ( call_id ) ,
ResponseItem ::LocalShellCall {
call_id : Some ( call_id ) ,
..
} = > Some ( call_id ) ,
2025-08-22 13:42:34 -07:00
ResponseItem ::CustomToolCallOutput { call_id , .. } = > Some ( call_id ) ,
2025-06-26 14:40:42 -04:00
_ = > None ,
} )
. collect ::< Vec < _ > > ( ) ;
// call_ids that were pending but are not part of this response.
// This usually happens because the user interrupted the model before we responded to one of its tool calls
// and then the user sent a follow-up message.
let missing_calls = {
2025-07-23 10:37:45 -07:00
prompt
. input
2025-06-26 14:40:42 -04:00
. iter ( )
2025-07-23 10:37:45 -07:00
. filter_map ( | ri | match ri {
ResponseItem ::FunctionCall { call_id , .. } = > Some ( call_id ) ,
ResponseItem ::LocalShellCall {
call_id : Some ( call_id ) ,
..
} = > Some ( call_id ) ,
2025-08-22 13:42:34 -07:00
ResponseItem ::CustomToolCall { call_id , .. } = > Some ( call_id ) ,
2025-07-23 10:37:45 -07:00
_ = > None ,
} )
2025-06-26 14:40:42 -04:00
. filter_map ( | call_id | {
if completed_call_ids . contains ( & call_id ) {
None
} else {
Some ( call_id . clone ( ) )
}
} )
2025-08-22 13:42:34 -07:00
. map ( | call_id | ResponseItem ::CustomToolCallOutput {
2025-09-11 11:59:37 -07:00
call_id ,
2025-08-22 13:42:34 -07:00
output : " aborted " . to_string ( ) ,
2025-06-26 14:40:42 -04:00
} )
. collect ::< Vec < _ > > ( )
} ;
let prompt : Cow < Prompt > = if missing_calls . is_empty ( ) {
Cow ::Borrowed ( prompt )
} else {
// Add the synthetic aborted missing calls to the beginning of the input to ensure all call ids have responses.
let input = [ missing_calls , prompt . input . clone ( ) ] . concat ( ) ;
Cow ::Owned ( Prompt {
input ,
.. prompt . clone ( )
} )
} ;
2025-09-11 11:08:51 -07:00
let rollout_item = RolloutItem ::TurnContext ( TurnContextItem {
cwd : turn_context . cwd . clone ( ) ,
approval_policy : turn_context . approval_policy ,
sandbox_policy : turn_context . sandbox_policy . clone ( ) ,
2025-09-11 11:59:37 -07:00
model : turn_context . client . get_model ( ) ,
2025-09-11 11:08:51 -07:00
effort : turn_context . client . get_reasoning_effort ( ) ,
summary : turn_context . client . get_reasoning_summary ( ) ,
} ) ;
sess . persist_rollout_items ( & [ rollout_item ] ) . await ;
2025-08-15 09:40:02 -07:00
let mut stream = turn_context . client . clone ( ) . stream ( & prompt ) . await ? ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let mut output = Vec ::new ( ) ;
2025-08-23 22:58:56 -07:00
2025-07-18 12:12:39 -07:00
loop {
// Poll the next item from the model stream. We must inspect *both* Ok and Err
// cases so that transient stream failures (e.g., dropped SSE connection before
// `response.completed`) bubble up and trigger the caller's retry logic.
let event = stream . next ( ) . await ;
let Some ( event ) = event else {
// Channel closed without yielding a final Completed event or explicit error.
// Treat as a disconnected stream so the caller can retry.
return Err ( CodexErr ::Stream (
" stream closed before response.completed " . into ( ) ,
2025-08-13 15:43:54 -07:00
None ,
2025-07-18 12:12:39 -07:00
) ) ;
} ;
let event = match event {
Ok ( ev ) = > ev ,
Err ( e ) = > {
// Propagate the underlying stream error to the caller (run_turn), which
// will apply the configured `stream_max_retries` policy.
return Err ( e ) ;
}
} ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
match event {
2025-07-23 10:37:45 -07:00
ResponseEvent ::Created = > { }
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
ResponseEvent ::OutputItemDone ( item ) = > {
2025-08-15 09:40:02 -07:00
let response = handle_response_item (
sess ,
turn_context ,
turn_diff_tracker ,
sub_id ,
item . clone ( ) ,
)
. await ? ;
2025-04-25 12:08:18 -07:00
output . push ( ProcessedResponseItem { item , response } ) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-28 19:24:38 -07:00
ResponseEvent ::WebSearchCallBegin { call_id } = > {
2025-08-23 22:58:56 -07:00
let _ = sess
. tx_event
. send ( Event {
id : sub_id . to_string ( ) ,
2025-08-28 19:24:38 -07:00
msg : EventMsg ::WebSearchBegin ( WebSearchBeginEvent { call_id } ) ,
2025-08-23 22:58:56 -07:00
} )
. await ;
}
2025-09-20 21:26:16 -07:00
ResponseEvent ::RateLimits ( snapshot ) = > {
// Update internal state with latest rate limits, but defer sending until
// token usage is available to avoid duplicate TokenCount events.
2025-09-23 15:56:34 -07:00
sess . update_rate_limits ( sub_id , snapshot ) . await ;
2025-09-20 21:26:16 -07:00
}
feat: show number of tokens remaining in UI (#1388)
When using the OpenAI Responses API, we now record the `usage` field for
a `"response.completed"` event, which includes metrics about the number
of tokens consumed. We also introduce `openai_model_info.rs`, which
includes current data about the most common OpenAI models available via
the API (specifically `context_window` and `max_output_tokens`). If
Codex does not recognize the model, you can set `model_context_window`
and `model_max_output_tokens` explicitly in `config.toml`.
When then introduce a new event type to `protocol.rs`, `TokenCount`,
which includes the `TokenUsage` for the most recent turn.
Finally, we update the TUI to record the running sum of tokens used so
the percentage of available context window remaining can be reported via
the placeholder text for the composer:

We could certainly get much fancier with this (such as reporting the
estimated cost of the conversation), but for now, we are just trying to
achieve feature parity with the TypeScript CLI.
Though arguably this improves upon the TypeScript CLI, as the TypeScript
CLI uses heuristics to estimate the number of tokens used rather than
using the `usage` information directly:
https://github.com/openai/codex/blob/296996d74e345b1b05d8c3451a06ace21c5ada96/codex-cli/src/utils/approximate-tokens-used.ts#L3-L16
Fixes https://github.com/openai/codex/issues/1242
2025-06-25 23:31:11 -07:00
ResponseEvent ::Completed {
2025-07-23 10:37:45 -07:00
response_id : _ ,
feat: show number of tokens remaining in UI (#1388)
When using the OpenAI Responses API, we now record the `usage` field for
a `"response.completed"` event, which includes metrics about the number
of tokens consumed. We also introduce `openai_model_info.rs`, which
includes current data about the most common OpenAI models available via
the API (specifically `context_window` and `max_output_tokens`). If
Codex does not recognize the model, you can set `model_context_window`
and `model_max_output_tokens` explicitly in `config.toml`.
When then introduce a new event type to `protocol.rs`, `TokenCount`,
which includes the `TokenUsage` for the most recent turn.
Finally, we update the TUI to record the running sum of tokens used so
the percentage of available context window remaining can be reported via
the placeholder text for the composer:

We could certainly get much fancier with this (such as reporting the
estimated cost of the conversation), but for now, we are just trying to
achieve feature parity with the TypeScript CLI.
Though arguably this improves upon the TypeScript CLI, as the TypeScript
CLI uses heuristics to estimate the number of tokens used rather than
using the `usage` information directly:
https://github.com/openai/codex/blob/296996d74e345b1b05d8c3451a06ace21c5ada96/codex-cli/src/utils/approximate-tokens-used.ts#L3-L16
Fixes https://github.com/openai/codex/issues/1242
2025-06-25 23:31:11 -07:00
token_usage ,
} = > {
2025-09-23 15:56:34 -07:00
sess . update_token_usage_info ( sub_id , turn_context , token_usage . as_ref ( ) )
2025-09-09 16:52:33 -07:00
. await ;
feat: show number of tokens remaining in UI (#1388)
When using the OpenAI Responses API, we now record the `usage` field for
a `"response.completed"` event, which includes metrics about the number
of tokens consumed. We also introduce `openai_model_info.rs`, which
includes current data about the most common OpenAI models available via
the API (specifically `context_window` and `max_output_tokens`). If
Codex does not recognize the model, you can set `model_context_window`
and `model_max_output_tokens` explicitly in `config.toml`.
When then introduce a new event type to `protocol.rs`, `TokenCount`,
which includes the `TokenUsage` for the most recent turn.
Finally, we update the TUI to record the running sum of tokens used so
the percentage of available context window remaining can be reported via
the placeholder text for the composer:

We could certainly get much fancier with this (such as reporting the
estimated cost of the conversation), but for now, we are just trying to
achieve feature parity with the TypeScript CLI.
Though arguably this improves upon the TypeScript CLI, as the TypeScript
CLI uses heuristics to estimate the number of tokens used rather than
using the `usage` information directly:
https://github.com/openai/codex/blob/296996d74e345b1b05d8c3451a06ace21c5ada96/codex-cli/src/utils/approximate-tokens-used.ts#L3-L16
Fixes https://github.com/openai/codex/issues/1242
2025-06-25 23:31:11 -07:00
2025-08-04 08:57:04 -07:00
let unified_diff = turn_diff_tracker . get_unified_diff ( ) ;
if let Ok ( Some ( unified_diff ) ) = unified_diff {
let msg = EventMsg ::TurnDiff ( TurnDiffEvent { unified_diff } ) ;
let event = Event {
id : sub_id . to_string ( ) ,
msg ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-04 08:57:04 -07:00
}
2025-09-12 13:07:10 -07:00
let result = TurnRunResult {
processed_items : output ,
total_token_usage : token_usage . clone ( ) ,
} ;
return Ok ( result ) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-07-16 15:11:18 -07:00
ResponseEvent ::OutputTextDelta ( delta ) = > {
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
// In review child threads, suppress assistant text deltas; the
// UI will show a selection popup from the final ReviewOutput.
if ! turn_context . is_review_mode {
let event = Event {
id : sub_id . to_string ( ) ,
msg : EventMsg ::AgentMessageDelta ( AgentMessageDeltaEvent { delta } ) ,
} ;
sess . send_event ( event ) . await ;
} else {
trace! ( " suppressing OutputTextDelta in review mode " ) ;
}
2025-07-16 15:11:18 -07:00
}
ResponseEvent ::ReasoningSummaryDelta ( delta ) = > {
2025-08-04 17:03:24 -07:00
let event = Event {
id : sub_id . to_string ( ) ,
msg : EventMsg ::AgentReasoningDelta ( AgentReasoningDeltaEvent { delta } ) ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-12 17:37:28 -07:00
}
ResponseEvent ::ReasoningSummaryPartAdded = > {
let event = Event {
id : sub_id . to_string ( ) ,
msg : EventMsg ::AgentReasoningSectionBreak ( AgentReasoningSectionBreakEvent { } ) ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-07-16 15:11:18 -07:00
}
2025-08-05 01:56:13 -07:00
ResponseEvent ::ReasoningContentDelta ( delta ) = > {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
if sess . show_raw_agent_reasoning ( ) {
2025-08-05 01:56:13 -07:00
let event = Event {
id : sub_id . to_string ( ) ,
msg : EventMsg ::AgentReasoningRawContentDelta (
AgentReasoningRawContentDeltaEvent { delta } ,
) ,
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-05 01:56:13 -07:00
}
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
}
async fn handle_response_item (
sess : & Session ,
2025-08-15 09:40:02 -07:00
turn_context : & TurnContext ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker : & mut TurnDiffTracker ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
sub_id : & str ,
item : ResponseItem ,
) -> CodexResult < Option < ResponseInputItem > > {
debug! ( ? item , " Output item " ) ;
2025-05-16 14:38:08 -07:00
let output = match item {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
ResponseItem ::FunctionCall {
name ,
arguments ,
call_id ,
2025-07-23 10:37:45 -07:00
..
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
} = > {
2025-08-22 13:42:34 -07:00
info! ( " FunctionCall: {name}({arguments}) " ) ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
if let Some ( ( server , tool_name ) ) =
sess . services . mcp_connection_manager . parse_tool_name ( & name )
{
2025-09-24 10:27:35 -07:00
let resp = handle_mcp_tool_call (
sess ,
sub_id ,
call_id . clone ( ) ,
server ,
tool_name ,
arguments ,
)
. await ;
Some ( resp )
} else {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let result = turn_context
. client
. get_otel_event_manager ( )
. log_tool_result ( name . as_str ( ) , call_id . as_str ( ) , arguments . as_str ( ) , | | {
handle_function_call (
sess ,
turn_context ,
turn_diff_tracker ,
sub_id . to_string ( ) ,
name . to_owned ( ) ,
arguments . to_owned ( ) ,
call_id . clone ( ) ,
)
} )
. await ;
2025-09-24 10:27:35 -07:00
let output = match result {
Ok ( content ) = > FunctionCallOutputPayload {
content ,
success : Some ( true ) ,
} ,
Err ( FunctionCallError ::RespondToModel ( msg ) ) = > FunctionCallOutputPayload {
content : msg ,
success : Some ( false ) ,
} ,
} ;
Some ( ResponseInputItem ::FunctionCallOutput { call_id , output } )
}
2025-05-16 14:38:08 -07:00
}
ResponseItem ::LocalShellCall {
id ,
call_id ,
status : _ ,
action ,
} = > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let name = " local_shell " ;
2025-05-16 14:38:08 -07:00
let LocalShellAction ::Exec ( action ) = action ;
tracing ::info! ( " LocalShellCall: {action:?} " ) ;
let params = ShellToolCallParams {
command : action . command ,
workdir : action . working_directory ,
timeout_ms : action . timeout_ms ,
2025-08-05 20:44:20 -07:00
with_escalated_permissions : None ,
justification : None ,
2025-05-16 14:38:08 -07:00
} ;
let effective_call_id = match ( call_id , id ) {
( Some ( call_id ) , _ ) = > call_id ,
( None , Some ( id ) ) = > id ,
( None , None ) = > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let error_message = " LocalShellCall without call_id or id " ;
turn_context
. client
. get_otel_event_manager ( )
. log_tool_failed ( name , error_message ) ;
error! ( error_message ) ;
2025-05-16 14:38:08 -07:00
return Ok ( Some ( ResponseInputItem ::FunctionCallOutput {
call_id : " " . to_string ( ) ,
output : FunctionCallOutputPayload {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
content : error_message . to_string ( ) ,
2025-05-16 14:38:08 -07:00
success : None ,
} ,
} ) ) ;
}
} ;
2025-08-15 09:40:02 -07:00
let exec_params = to_exec_params ( params , turn_context ) ;
2025-09-24 10:27:35 -07:00
{
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let result = turn_context
. client
. get_otel_event_manager ( )
. log_tool_result (
name ,
effective_call_id . as_str ( ) ,
exec_params . command . join ( " " ) . as_str ( ) ,
| | {
handle_container_exec_with_params (
name ,
exec_params ,
sess ,
turn_context ,
turn_diff_tracker ,
sub_id . to_string ( ) ,
effective_call_id . clone ( ) ,
)
} ,
)
. await ;
2025-09-24 10:27:35 -07:00
let output = match result {
Ok ( content ) = > FunctionCallOutputPayload {
content ,
success : Some ( true ) ,
} ,
Err ( FunctionCallError ::RespondToModel ( msg ) ) = > FunctionCallOutputPayload {
content : msg ,
success : Some ( false ) ,
} ,
} ;
Some ( ResponseInputItem ::FunctionCallOutput {
call_id : effective_call_id ,
output ,
} )
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-22 13:42:34 -07:00
ResponseItem ::CustomToolCall {
id : _ ,
call_id ,
name ,
input ,
status : _ ,
2025-09-24 10:27:35 -07:00
} = > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let result = turn_context
. client
. get_otel_event_manager ( )
. log_tool_result ( name . as_str ( ) , call_id . as_str ( ) , input . as_str ( ) , | | {
handle_custom_tool_call (
sess ,
turn_context ,
turn_diff_tracker ,
sub_id . to_string ( ) ,
name . to_owned ( ) ,
input . to_owned ( ) ,
call_id . clone ( ) ,
)
} )
. await ;
2025-09-24 10:27:35 -07:00
let output = match result {
Ok ( content ) = > content ,
Err ( FunctionCallError ::RespondToModel ( msg ) ) = > msg ,
} ;
Some ( ResponseInputItem ::CustomToolCallOutput { call_id , output } )
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
ResponseItem ::FunctionCallOutput { .. } = > {
debug! ( " unexpected FunctionCallOutput from stream " ) ;
2025-05-16 14:38:08 -07:00
None
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
2025-08-22 13:42:34 -07:00
ResponseItem ::CustomToolCallOutput { .. } = > {
debug! ( " unexpected CustomToolCallOutput from stream " ) ;
None
}
2025-09-03 21:47:00 -07:00
ResponseItem ::Message { .. }
| ResponseItem ::Reasoning { .. }
| ResponseItem ::WebSearchCall { .. } = > {
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
// In review child threads, suppress assistant message events but
// keep reasoning/web search.
let msgs = match & item {
ResponseItem ::Message { .. } if turn_context . is_review_mode = > {
trace! ( " suppressing assistant Message in review mode " ) ;
Vec ::new ( )
}
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
_ = > map_response_item_to_event_messages ( & item , sess . show_raw_agent_reasoning ( ) ) ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
} ;
2025-09-03 21:47:00 -07:00
for msg in msgs {
2025-08-28 19:24:38 -07:00
let event = Event {
id : sub_id . to_string ( ) ,
2025-09-03 21:47:00 -07:00
msg ,
2025-08-28 19:24:38 -07:00
} ;
2025-09-09 16:52:33 -07:00
sess . send_event ( event ) . await ;
2025-08-28 19:24:38 -07:00
}
None
}
2025-05-16 14:38:08 -07:00
ResponseItem ::Other = > None ,
} ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
Ok ( output )
}
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
async fn handle_unified_exec_tool_call (
sess : & Session ,
session_id : Option < String > ,
arguments : Vec < String > ,
timeout_ms : Option < u64 > ,
2025-09-24 10:27:35 -07:00
) -> Result < String , FunctionCallError > {
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
let parsed_session_id = if let Some ( session_id ) = session_id {
match session_id . parse ::< i32 > ( ) {
Ok ( parsed ) = > Some ( parsed ) ,
Err ( output ) = > {
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel ( format! (
" invalid session_id: {session_id} due to error {output:?} "
) ) ) ;
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
}
}
} else {
None
} ;
let request = crate ::unified_exec ::UnifiedExecRequest {
session_id : parsed_session_id ,
input_chunks : & arguments ,
timeout_ms ,
} ;
2025-09-24 10:27:35 -07:00
let value = sess
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
. services
2025-09-24 10:27:35 -07:00
. unified_exec_manager
. handle_request ( request )
. await
. map_err ( | err | {
FunctionCallError ::RespondToModel ( format! ( " unified exec failed: {err:?} " ) )
} ) ? ;
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
2025-09-24 10:27:35 -07:00
#[ derive(Serialize) ]
struct SerializedUnifiedExecResult {
session_id : Option < String > ,
output : String ,
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
}
2025-09-24 10:27:35 -07:00
serde_json ::to_string ( & SerializedUnifiedExecResult {
session_id : value . session_id . map ( | id | id . to_string ( ) ) ,
output : value . output ,
} )
. map_err ( | err | {
FunctionCallError ::RespondToModel ( format! (
" failed to serialize unified exec output: {err:?} "
) )
} )
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
async fn handle_function_call (
sess : & Session ,
2025-08-15 09:40:02 -07:00
turn_context : & TurnContext ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker : & mut TurnDiffTracker ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
sub_id : String ,
name : String ,
arguments : String ,
call_id : String ,
2025-09-24 10:27:35 -07:00
) -> Result < String , FunctionCallError > {
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
match name . as_str ( ) {
" container.exec " | " shell " = > {
2025-09-24 10:27:35 -07:00
let params = parse_container_exec_arguments ( arguments , turn_context , & call_id ) ? ;
2025-08-15 09:40:02 -07:00
handle_container_exec_with_params (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
name . as_str ( ) ,
2025-08-15 09:40:02 -07:00
params ,
sess ,
turn_context ,
turn_diff_tracker ,
sub_id ,
call_id ,
)
. await
2025-05-16 14:17:10 -07:00
}
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
" unified_exec " = > {
#[ derive(Deserialize) ]
struct UnifiedExecArgs {
input : Vec < String > ,
#[ serde(default) ]
session_id : Option < String > ,
#[ serde(default) ]
timeout_ms : Option < u64 > ,
}
2025-09-24 10:27:35 -07:00
let args : UnifiedExecArgs = serde_json ::from_str ( & arguments ) . map_err ( | err | {
FunctionCallError ::RespondToModel ( format! (
" failed to parse function arguments: {err:?} "
) )
} ) ? ;
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
2025-09-24 10:27:35 -07:00
handle_unified_exec_tool_call ( sess , args . session_id , args . input , args . timeout_ms ) . await
Unified execution (#3288)
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
2025-09-10 17:38:11 -07:00
}
2025-08-27 17:41:23 -07:00
" view_image " = > {
#[ derive(serde::Deserialize) ]
struct SeeImageArgs {
path : String ,
}
2025-09-24 10:27:35 -07:00
let args : SeeImageArgs = serde_json ::from_str ( & arguments ) . map_err ( | e | {
FunctionCallError ::RespondToModel ( format! (
" failed to parse function arguments: {e:?} "
) )
} ) ? ;
2025-08-27 17:41:23 -07:00
let abs = turn_context . resolve_path ( Some ( args . path ) ) ;
2025-09-24 10:27:35 -07:00
sess . inject_input ( vec! [ InputItem ::LocalImage { path : abs } ] )
2025-09-18 18:21:52 +01:00
. await
2025-09-24 10:27:35 -07:00
. map_err ( | _ | {
FunctionCallError ::RespondToModel (
" unable to attach image (no active task) " . to_string ( ) ,
)
} ) ? ;
Ok ( " attached local image path " . to_string ( ) )
2025-08-27 17:41:23 -07:00
}
2025-08-15 11:55:53 -04:00
" apply_patch " = > {
2025-09-24 10:27:35 -07:00
let args : ApplyPatchToolArgs = serde_json ::from_str ( & arguments ) . map_err ( | e | {
FunctionCallError ::RespondToModel ( format! (
" failed to parse function arguments: {e:?} "
) )
} ) ? ;
2025-08-15 11:55:53 -04:00
let exec_params = ExecParams {
command : vec ! [ " apply_patch " . to_string ( ) , args . input . clone ( ) ] ,
2025-08-15 09:40:02 -07:00
cwd : turn_context . cwd . clone ( ) ,
2025-08-15 11:55:53 -04:00
timeout_ms : None ,
env : HashMap ::new ( ) ,
with_escalated_permissions : None ,
justification : None ,
} ;
2025-08-15 09:40:02 -07:00
handle_container_exec_with_params (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
name . as_str ( ) ,
2025-08-15 09:40:02 -07:00
exec_params ,
sess ,
turn_context ,
turn_diff_tracker ,
sub_id ,
call_id ,
)
. await
2025-08-15 11:55:53 -04:00
}
2025-07-29 11:22:02 -07:00
" update_plan " = > handle_update_plan ( sess , arguments , sub_id , call_id ) . await ,
2025-08-22 18:10:55 -07:00
EXEC_COMMAND_TOOL_NAME = > {
// TODO(mbolin): Sandbox check.
2025-09-24 10:27:35 -07:00
let exec_params : ExecCommandParams = serde_json ::from_str ( & arguments ) . map_err ( | e | {
FunctionCallError ::RespondToModel ( format! (
" failed to parse function arguments: {e:?} "
) )
} ) ? ;
2025-08-24 22:52:49 -07:00
let result = sess
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
. services
2025-08-24 22:52:49 -07:00
. session_manager
2025-08-22 18:10:55 -07:00
. handle_exec_command_request ( exec_params )
. await ;
2025-09-24 10:27:35 -07:00
match result {
Ok ( output ) = > Ok ( output . to_text_output ( ) ) ,
Err ( err ) = > Err ( FunctionCallError ::RespondToModel ( err ) ) ,
2025-08-22 18:10:55 -07:00
}
}
WRITE_STDIN_TOOL_NAME = > {
2025-09-24 10:27:35 -07:00
let write_stdin_params =
serde_json ::from_str ::< WriteStdinParams > ( & arguments ) . map_err ( | e | {
FunctionCallError ::RespondToModel ( format! (
" failed to parse function arguments: {e:?} "
) )
} ) ? ;
2025-08-24 22:52:49 -07:00
let result = sess
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
. services
2025-08-24 22:52:49 -07:00
. session_manager
2025-08-22 18:10:55 -07:00
. handle_write_stdin_request ( write_stdin_params )
2025-09-24 10:27:35 -07:00
. await
. map_err ( FunctionCallError ::RespondToModel ) ? ;
Ok ( result . to_text_output ( ) )
2025-05-16 14:17:10 -07:00
}
2025-09-24 10:27:35 -07:00
_ = > Err ( FunctionCallError ::RespondToModel ( format! (
" unsupported call: {name} "
) ) ) ,
2025-05-16 14:17:10 -07:00
}
}
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
2025-08-22 13:42:34 -07:00
async fn handle_custom_tool_call (
sess : & Session ,
turn_context : & TurnContext ,
turn_diff_tracker : & mut TurnDiffTracker ,
sub_id : String ,
name : String ,
input : String ,
call_id : String ,
2025-09-24 10:27:35 -07:00
) -> Result < String , FunctionCallError > {
2025-08-22 13:42:34 -07:00
info! ( " CustomToolCall: {name} {input} " ) ;
match name . as_str ( ) {
" apply_patch " = > {
let exec_params = ExecParams {
command : vec ! [ " apply_patch " . to_string ( ) , input . clone ( ) ] ,
cwd : turn_context . cwd . clone ( ) ,
timeout_ms : None ,
env : HashMap ::new ( ) ,
with_escalated_permissions : None ,
justification : None ,
} ;
2025-09-24 10:27:35 -07:00
handle_container_exec_with_params (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
name . as_str ( ) ,
2025-08-22 13:42:34 -07:00
exec_params ,
sess ,
turn_context ,
turn_diff_tracker ,
sub_id ,
call_id ,
)
2025-09-24 10:27:35 -07:00
. await
2025-08-22 13:42:34 -07:00
}
_ = > {
debug! ( " unexpected CustomToolCall from stream " ) ;
2025-09-24 10:27:35 -07:00
Err ( FunctionCallError ::RespondToModel ( format! (
" unsupported custom tool call: {name} "
) ) )
2025-08-22 13:42:34 -07:00
}
}
}
2025-08-15 09:40:02 -07:00
fn to_exec_params ( params : ShellToolCallParams , turn_context : & TurnContext ) -> ExecParams {
2025-05-16 14:17:10 -07:00
ExecParams {
command : params . command ,
2025-08-15 09:40:02 -07:00
cwd : turn_context . resolve_path ( params . workdir . clone ( ) ) ,
2025-05-16 14:17:10 -07:00
timeout_ms : params . timeout_ms ,
2025-08-15 09:40:02 -07:00
env : create_env ( & turn_context . shell_environment_policy ) ,
2025-08-05 20:44:20 -07:00
with_escalated_permissions : params . with_escalated_permissions ,
justification : params . justification ,
2025-05-16 14:17:10 -07:00
}
}
fn parse_container_exec_arguments (
arguments : String ,
2025-08-15 09:40:02 -07:00
turn_context : & TurnContext ,
2025-09-24 10:27:35 -07:00
_call_id : & str ,
) -> Result < ExecParams , FunctionCallError > {
serde_json ::from_str ::< ShellToolCallParams > ( & arguments )
. map ( | p | to_exec_params ( p , turn_context ) )
. map_err ( | e | {
FunctionCallError ::RespondToModel ( format! ( " failed to parse function arguments: {e:?} " ) )
} )
2025-05-16 14:17:10 -07:00
}
2025-08-06 23:25:56 -07:00
pub struct ExecInvokeArgs < ' a > {
pub params : ExecParams ,
pub sandbox_type : SandboxType ,
pub sandbox_policy : & ' a SandboxPolicy ,
2025-09-18 14:37:06 -07:00
pub sandbox_cwd : & ' a Path ,
2025-08-06 23:25:56 -07:00
pub codex_linux_sandbox_exe : & ' a Option < PathBuf > ,
pub stdout_stream : Option < StdoutStream > ,
}
2025-08-20 16:30:34 -07:00
fn maybe_translate_shell_command (
2025-08-15 09:40:02 -07:00
params : ExecParams ,
sess : & Session ,
turn_context : & TurnContext ,
) -> ExecParams {
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let should_translate = matches! ( sess . user_shell ( ) , crate ::shell ::Shell ::PowerShell ( _ ) )
2025-09-10 12:40:24 -07:00
| | turn_context . shell_environment_policy . use_profile ;
2025-08-20 16:30:34 -07:00
if should_translate
& & let Some ( command ) = sess
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
. user_shell ( )
2025-08-20 16:30:34 -07:00
. format_default_shell_invocation ( params . command . clone ( ) )
{
return ExecParams { command , .. params } ;
2025-07-25 11:45:23 -07:00
}
params
}
2025-05-16 14:17:10 -07:00
async fn handle_container_exec_with_params (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
tool_name : & str ,
2025-05-16 14:17:10 -07:00
params : ExecParams ,
sess : & Session ,
2025-08-15 09:40:02 -07:00
turn_context : & TurnContext ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker : & mut TurnDiffTracker ,
2025-05-16 14:17:10 -07:00
sub_id : String ,
call_id : String ,
2025-09-24 10:27:35 -07:00
) -> Result < String , FunctionCallError > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let otel_event_manager = turn_context . client . get_otel_event_manager ( ) ;
2025-09-18 17:08:28 -07:00
if params . with_escalated_permissions . unwrap_or ( false )
& & ! matches! ( turn_context . approval_policy , AskForApproval ::OnRequest )
{
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel ( format! (
" approval policy is {policy:?}; reject command — you should not ask for escalated permissions if the approval policy is {policy:?} " ,
policy = turn_context . approval_policy
) ) ) ;
2025-09-18 17:08:28 -07:00
}
2025-05-16 14:17:10 -07:00
// check if this was a patch, and apply it if so
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
let apply_patch_exec = match maybe_parse_apply_patch_verified ( & params . command , & params . cwd ) {
MaybeApplyPatchVerified ::Body ( changes ) = > {
2025-08-15 09:40:02 -07:00
match apply_patch ::apply_patch ( sess , turn_context , & sub_id , & call_id , changes ) . await {
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
InternalApplyPatchInvocation ::Output ( item ) = > return item ,
InternalApplyPatchInvocation ::DelegateToExec ( apply_patch_exec ) = > {
Some ( apply_patch_exec )
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
}
}
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
}
MaybeApplyPatchVerified ::CorrectnessError ( parse_error ) = > {
// It looks like an invocation of `apply_patch`, but we
// could not resolve it into a patch that would apply
// cleanly. Return to model for resample.
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel ( format! (
" error: {parse_error:#?} "
) ) ) ;
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
}
MaybeApplyPatchVerified ::ShellParseError ( error ) = > {
trace! ( " Failed to parse shell command, {error:?} " ) ;
None
}
MaybeApplyPatchVerified ::NotApplyPatch = > None ,
} ;
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
let ( params , safety , command_for_display ) = match & apply_patch_exec {
Some ( ApplyPatchExec {
action : ApplyPatchAction { patch , cwd , .. } ,
user_explicitly_approved_this_action ,
} ) = > {
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
let path_to_codex = std ::env ::current_exe ( )
. ok ( )
. map ( | p | p . to_string_lossy ( ) . to_string ( ) ) ;
let Some ( path_to_codex ) = path_to_codex else {
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel (
" failed to determine path to codex executable " . to_string ( ) ,
) ) ;
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
} ;
let params = ExecParams {
command : vec ! [
path_to_codex ,
CODEX_APPLY_PATCH_ARG1 . to_string ( ) ,
patch . clone ( ) ,
] ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
cwd : cwd . clone ( ) ,
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
timeout_ms : params . timeout_ms ,
env : HashMap ::new ( ) ,
2025-08-05 20:44:20 -07:00
with_escalated_permissions : params . with_escalated_permissions ,
justification : params . justification . clone ( ) ,
2025-05-16 14:17:10 -07:00
} ;
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
let safety = if * user_explicitly_approved_this_action {
SafetyCheck ::AutoApprove {
sandbox_type : SandboxType ::None ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
user_explicitly_approved : true ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
}
} else {
2025-08-05 20:44:20 -07:00
assess_safety_for_untrusted_command (
2025-08-15 09:40:02 -07:00
turn_context . approval_policy ,
& turn_context . sandbox_policy ,
2025-08-05 20:44:20 -07:00
params . with_escalated_permissions . unwrap_or ( false ) ,
)
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
} ;
(
params ,
safety ,
vec! [ " apply_patch " . to_string ( ) , patch . clone ( ) ] ,
)
2025-05-16 14:17:10 -07:00
}
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
None = > {
let safety = {
2025-09-18 18:21:52 +01:00
let state = sess . state . lock ( ) . await ;
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
assess_command_safety (
& params . command ,
2025-08-15 09:40:02 -07:00
turn_context . approval_policy ,
& turn_context . sandbox_policy ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
state . approved_commands_ref ( ) ,
2025-08-05 20:44:20 -07:00
params . with_escalated_permissions . unwrap_or ( false ) ,
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
)
} ;
let command_for_display = params . command . clone ( ) ;
( params , safety , command_for_display )
2025-05-16 14:17:10 -07:00
}
} ;
fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.
Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.
Unfortunately, this approach afforded a loophole: symlinks!
* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.
The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.
This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:
```shell
#!/usr/bin/env bash
set -euo pipefail
# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?
# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"
cleanup() {
# Only remove if it looks sane and still exists
[[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
[[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}
trap cleanup EXIT
echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"
# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"
cat "${SANDBOX_DIR}/link-to-original.txt"
if [[ "$(uname)" == "Linux" ]]; then
SANDBOX_SUBCOMMAND=landlock
else
SANDBOX_SUBCOMMAND=seatbelt
fi
# Attempt the exploit
cd "${SANDBOX_DIR}"
codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true
cat "${EXPLOIT_DIR}/original.txt"
```
Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
2025-05-16 14:17:10 -07:00
let sandbox_type = match safety {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
SafetyCheck ::AutoApprove {
sandbox_type ,
user_explicitly_approved ,
} = > {
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
ReviewDecision ::Approved ,
if user_explicitly_approved {
ToolDecisionSource ::User
} else {
ToolDecisionSource ::Config
} ,
) ;
sandbox_type
}
2025-05-16 14:17:10 -07:00
SafetyCheck ::AskUser = > {
2025-09-23 07:25:46 -07:00
let decision = sess
2025-05-16 14:17:10 -07:00
. request_command_approval (
sub_id . clone ( ) ,
2025-07-23 11:43:53 -07:00
call_id . clone ( ) ,
2025-05-16 14:17:10 -07:00
params . command . clone ( ) ,
params . cwd . clone ( ) ,
2025-08-05 20:44:20 -07:00
params . justification . clone ( ) ,
2025-05-16 14:17:10 -07:00
)
. await ;
2025-09-23 07:25:46 -07:00
match decision {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
ReviewDecision ::Approved = > {
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
ReviewDecision ::Approved ,
ToolDecisionSource ::User ,
) ;
}
2025-05-16 14:17:10 -07:00
ReviewDecision ::ApprovedForSession = > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
ReviewDecision ::ApprovedForSession ,
ToolDecisionSource ::User ,
) ;
2025-09-18 18:21:52 +01:00
sess . add_approved_command ( params . command . clone ( ) ) . await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
ReviewDecision ::Denied = > {
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
ReviewDecision ::Denied ,
ToolDecisionSource ::User ,
) ;
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel (
" exec command rejected by user " . to_string ( ) ,
) ) ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
ReviewDecision ::Abort = > {
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
ReviewDecision ::Abort ,
ToolDecisionSource ::User ,
) ;
return Err ( FunctionCallError ::RespondToModel (
" exec command aborted by user " . to_string ( ) ,
) ) ;
}
2025-05-16 14:17:10 -07:00
}
// No sandboxing is applied because the user has given
// explicit approval. Often, we end up in this case because
// the command cannot be run in a sandbox, such as
// installing a new dependency that requires network access.
SandboxType ::None
}
SafetyCheck ::Reject { reason } = > {
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
ReviewDecision ::Denied ,
ToolDecisionSource ::Config ,
) ;
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel ( format! (
" exec command rejected: {reason:?} "
) ) ) ;
2025-05-16 14:17:10 -07:00
}
} ;
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
let exec_command_context = ExecCommandContext {
sub_id : sub_id . clone ( ) ,
call_id : call_id . clone ( ) ,
command_for_display : command_for_display . clone ( ) ,
cwd : params . cwd . clone ( ) ,
apply_patch : apply_patch_exec . map (
| ApplyPatchExec {
action ,
user_explicitly_approved_this_action ,
} | ApplyPatchCommandContext {
user_explicitly_approved_this_action ,
changes : convert_apply_patch_to_protocol ( & action ) ,
} ,
) ,
} ;
2025-05-16 14:17:10 -07:00
2025-08-20 16:30:34 -07:00
let params = maybe_translate_shell_command ( params , sess , turn_context ) ;
2025-08-06 23:25:56 -07:00
let output_result = sess
. run_exec_with_events (
turn_diff_tracker ,
exec_command_context . clone ( ) ,
ExecInvokeArgs {
params : params . clone ( ) ,
sandbox_type ,
2025-08-15 09:40:02 -07:00
sandbox_policy : & turn_context . sandbox_policy ,
2025-09-18 14:37:06 -07:00
sandbox_cwd : & turn_context . cwd ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
codex_linux_sandbox_exe : & sess . services . codex_linux_sandbox_exe ,
2025-08-26 19:16:51 -07:00
stdout_stream : if exec_command_context . apply_patch . is_some ( ) {
None
} else {
Some ( StdoutStream {
sub_id : sub_id . clone ( ) ,
call_id : call_id . clone ( ) ,
tx_event : sess . tx_event . clone ( ) ,
} )
} ,
2025-08-06 23:25:56 -07:00
} ,
)
. await ;
2025-05-16 14:17:10 -07:00
match output_result {
Ok ( output ) = > {
2025-08-11 11:52:05 -07:00
let ExecToolCallOutput { exit_code , .. } = & output ;
2025-08-22 16:32:31 -07:00
let content = format_exec_output ( & output ) ;
2025-09-24 10:27:35 -07:00
if * exit_code = = 0 {
Ok ( content )
} else {
Err ( FunctionCallError ::RespondToModel ( content ) )
2025-05-16 14:17:10 -07:00
}
}
Err ( CodexErr ::Sandbox ( error ) ) = > {
2025-08-04 08:57:04 -07:00
handle_sandbox_error (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
tool_name ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker ,
params ,
exec_command_context ,
error ,
sandbox_type ,
sess ,
2025-08-15 09:40:02 -07:00
turn_context ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
& otel_event_manager ,
2025-08-04 08:57:04 -07:00
)
. await
2025-05-16 14:17:10 -07:00
}
2025-09-24 10:27:35 -07:00
Err ( e ) = > Err ( FunctionCallError ::RespondToModel ( format! (
" execution error: {e:?} "
) ) ) ,
2025-05-16 14:17:10 -07:00
}
}
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
#[ allow(clippy::too_many_arguments) ]
2025-06-25 12:36:10 -07:00
async fn handle_sandbox_error (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
tool_name : & str ,
2025-08-04 08:57:04 -07:00
turn_diff_tracker : & mut TurnDiffTracker ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
params : ExecParams ,
exec_command_context : ExecCommandContext ,
2025-05-16 14:17:10 -07:00
error : SandboxErr ,
sandbox_type : SandboxType ,
sess : & Session ,
2025-08-15 09:40:02 -07:00
turn_context : & TurnContext ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager : & OtelEventManager ,
2025-09-24 10:27:35 -07:00
) -> Result < String , FunctionCallError > {
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
let call_id = exec_command_context . call_id . clone ( ) ;
let sub_id = exec_command_context . sub_id . clone ( ) ;
let cwd = exec_command_context . cwd . clone ( ) ;
2025-09-14 14:38:26 -07:00
if let SandboxErr ::Timeout { output } = & error {
let content = format_exec_output ( output ) ;
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel ( content ) ) ;
2025-09-11 12:09:20 -07:00
}
2025-08-05 20:44:20 -07:00
// Early out if either the user never wants to be asked for approval, or
// we're letting the model manage escalation requests. Otherwise, continue
2025-08-15 09:40:02 -07:00
match turn_context . approval_policy {
2025-08-05 20:44:20 -07:00
AskForApproval ::Never | AskForApproval ::OnRequest = > {
2025-09-24 10:27:35 -07:00
return Err ( FunctionCallError ::RespondToModel ( format! (
" failed in sandbox {sandbox_type:?} with execution error: {error:?} "
) ) ) ;
2025-08-05 20:44:20 -07:00
}
AskForApproval ::UnlessTrusted | AskForApproval ::OnFailure = > ( ) ,
2025-08-05 17:52:25 -07:00
}
2025-06-25 12:36:10 -07:00
// Note that when `error` is `SandboxErr::Denied`, it could be a false
// positive. That is, it may have exited with a non-zero exit code, not
// because the sandbox denied it, but because that is its expected behavior,
// i.e., a grep command that did not match anything. Ideally we would
// include additional metadata on the command to indicate whether non-zero
// exit codes merit a retry.
2025-08-04 21:23:22 -07:00
// For now, we categorically ask the user to retry without sandbox and
// emit the raw error as a background event.
2025-05-16 14:17:10 -07:00
sess . notify_background_event ( & sub_id , format! ( " Execution failed: {error} " ) )
. await ;
2025-09-23 07:25:46 -07:00
let decision = sess
2025-05-16 14:17:10 -07:00
. request_command_approval (
sub_id . clone ( ) ,
2025-07-23 11:43:53 -07:00
call_id . clone ( ) ,
2025-05-16 14:17:10 -07:00
params . command . clone ( ) ,
fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.
Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.
On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.
Prior to this change, `apply_patch()` in `core` would either:
* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory
https://github.com/openai/codex/blob/549846b29ad52f6cb4f8560365a731966054a9b3/codex-rs/core/src/apply_patch.rs#L61-L63
In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).
To unify things in this PR, we:
* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.
Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
cwd . clone ( ) ,
2025-05-16 14:17:10 -07:00
Some ( " command failed; retry without sandbox? " . to_string ( ) ) ,
)
. await ;
2025-09-23 07:25:46 -07:00
match decision {
2025-05-16 14:17:10 -07:00
ReviewDecision ::Approved | ReviewDecision ::ApprovedForSession = > {
// Persist this command as pre‑ approved for the
// remainder of the session so future
// executions skip the sandbox directly.
// TODO(ragona): Isn't this a bug? It always saves the command in an | fork?
2025-09-18 18:21:52 +01:00
sess . add_approved_command ( params . command . clone ( ) ) . await ;
2025-05-16 14:17:10 -07:00
// Inform UI we are retrying without sandbox.
sess . notify_background_event ( & sub_id , " retrying command without sandbox " )
. await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
decision ,
ToolDecisionSource ::User ,
) ;
2025-05-16 14:17:10 -07:00
// This is an escalated retry; the policy will not be
// examined and the sandbox has been set to `None`.
2025-08-06 23:25:56 -07:00
let retry_output_result = sess
. run_exec_with_events (
turn_diff_tracker ,
exec_command_context . clone ( ) ,
ExecInvokeArgs {
params ,
sandbox_type : SandboxType ::None ,
2025-08-15 09:40:02 -07:00
sandbox_policy : & turn_context . sandbox_policy ,
2025-09-18 14:37:06 -07:00
sandbox_cwd : & turn_context . cwd ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
codex_linux_sandbox_exe : & sess . services . codex_linux_sandbox_exe ,
2025-08-26 19:16:51 -07:00
stdout_stream : if exec_command_context . apply_patch . is_some ( ) {
None
} else {
Some ( StdoutStream {
sub_id : sub_id . clone ( ) ,
call_id : call_id . clone ( ) ,
tx_event : sess . tx_event . clone ( ) ,
} )
} ,
2025-08-06 23:25:56 -07:00
} ,
)
. await ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
2025-05-16 14:17:10 -07:00
match retry_output_result {
Ok ( retry_output ) = > {
2025-08-11 11:52:05 -07:00
let ExecToolCallOutput { exit_code , .. } = & retry_output ;
2025-08-22 16:32:31 -07:00
let content = format_exec_output ( & retry_output ) ;
2025-09-24 10:27:35 -07:00
if * exit_code = = 0 {
Ok ( content )
} else {
Err ( FunctionCallError ::RespondToModel ( content ) )
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
2025-09-24 10:27:35 -07:00
Err ( e ) = > Err ( FunctionCallError ::RespondToModel ( format! (
" retry failed: {e} "
) ) ) ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
decision @ ( ReviewDecision ::Denied | ReviewDecision ::Abort ) = > {
otel_event_manager . tool_decision (
tool_name ,
call_id . as_str ( ) ,
decision ,
ToolDecisionSource ::User ,
) ;
2025-05-16 14:17:10 -07:00
// Fall through to original failure handling.
2025-09-24 10:27:35 -07:00
Err ( FunctionCallError ::RespondToModel (
" exec command rejected by user " . to_string ( ) ,
) )
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
}
}
}
2025-08-22 16:32:31 -07:00
fn format_exec_output_str ( exec_output : & ExecToolCallOutput ) -> String {
2025-08-11 11:52:05 -07:00
let ExecToolCallOutput {
2025-08-23 09:54:31 -07:00
aggregated_output , ..
2025-08-22 16:32:31 -07:00
} = exec_output ;
2025-08-23 09:54:31 -07:00
// Head+tail truncation for the model: show the beginning and end with an elision.
// Clients still receive full streams; only this formatted summary is capped.
2025-08-22 16:32:31 -07:00
2025-09-14 14:38:26 -07:00
let mut s = & aggregated_output . text ;
let prefixed_str : String ;
if exec_output . timed_out {
prefixed_str = format! (
" command timed out after {} milliseconds \n " ,
exec_output . duration . as_millis ( )
) + s ;
s = & prefixed_str ;
}
2025-08-23 09:54:31 -07:00
let total_lines = s . lines ( ) . count ( ) ;
if s . len ( ) < = MODEL_FORMAT_MAX_BYTES & & total_lines < = MODEL_FORMAT_MAX_LINES {
return s . to_string ( ) ;
2025-08-22 16:32:31 -07:00
}
2025-08-23 09:54:31 -07:00
let lines : Vec < & str > = s . lines ( ) . collect ( ) ;
let head_take = MODEL_FORMAT_HEAD_LINES . min ( lines . len ( ) ) ;
let tail_take = MODEL_FORMAT_TAIL_LINES . min ( lines . len ( ) . saturating_sub ( head_take ) ) ;
let omitted = lines . len ( ) . saturating_sub ( head_take + tail_take ) ;
// Join head and tail blocks (lines() strips newlines; reinsert them)
let head_block = lines
. iter ( )
. take ( head_take )
. cloned ( )
. collect ::< Vec < _ > > ( )
. join ( " \n " ) ;
let tail_block = if tail_take > 0 {
lines [ lines . len ( ) - tail_take .. ] . join ( " \n " )
} else {
String ::new ( )
} ;
let marker = format! ( " \n [... omitted {omitted} of {total_lines} lines ...] \n \n " ) ;
// Byte budgets for head/tail around the marker
let mut head_budget = MODEL_FORMAT_HEAD_BYTES . min ( MODEL_FORMAT_MAX_BYTES ) ;
let tail_budget = MODEL_FORMAT_MAX_BYTES . saturating_sub ( head_budget + marker . len ( ) ) ;
if tail_budget = = 0 & & marker . len ( ) > = MODEL_FORMAT_MAX_BYTES {
// Degenerate case: marker alone exceeds budget; return a clipped marker
return take_bytes_at_char_boundary ( & marker , MODEL_FORMAT_MAX_BYTES ) . to_string ( ) ;
}
if tail_budget = = 0 {
// Make room for the marker by shrinking head
head_budget = MODEL_FORMAT_MAX_BYTES . saturating_sub ( marker . len ( ) ) ;
}
// Enforce line-count cap by trimming head/tail lines
let head_lines_text = head_block ;
let tail_lines_text = tail_block ;
// Build final string respecting byte budgets
let head_part = take_bytes_at_char_boundary ( & head_lines_text , head_budget ) ;
let mut result = String ::with_capacity ( MODEL_FORMAT_MAX_BYTES . min ( s . len ( ) ) ) ;
2025-09-14 14:38:26 -07:00
2025-08-23 09:54:31 -07:00
result . push_str ( head_part ) ;
result . push_str ( & marker ) ;
let remaining = MODEL_FORMAT_MAX_BYTES . saturating_sub ( result . len ( ) ) ;
let tail_budget_final = remaining ;
let tail_part = take_last_bytes_at_char_boundary ( & tail_lines_text , tail_budget_final ) ;
result . push_str ( tail_part ) ;
result
}
// Truncate a &str to a byte budget at a char boundary (prefix)
#[ inline ]
fn take_bytes_at_char_boundary ( s : & str , maxb : usize ) -> & str {
if s . len ( ) < = maxb {
return s ;
}
let mut last_ok = 0 ;
for ( i , ch ) in s . char_indices ( ) {
let nb = i + ch . len_utf8 ( ) ;
if nb > maxb {
break ;
}
last_ok = nb ;
}
& s [ .. last_ok ]
}
// Take a suffix of a &str within a byte budget at a char boundary
#[ inline ]
fn take_last_bytes_at_char_boundary ( s : & str , maxb : usize ) -> & str {
if s . len ( ) < = maxb {
return s ;
}
let mut start = s . len ( ) ;
let mut used = 0 usize ;
for ( i , ch ) in s . char_indices ( ) . rev ( ) {
let nb = ch . len_utf8 ( ) ;
if used + nb > maxb {
break ;
}
start = i ;
used + = nb ;
if start = = 0 {
break ;
}
}
& s [ start .. ]
2025-08-22 16:32:31 -07:00
}
/// Exec output is a pre-serialized JSON payload
fn format_exec_output ( exec_output : & ExecToolCallOutput ) -> String {
let ExecToolCallOutput {
exit_code ,
2025-08-11 11:52:05 -07:00
duration ,
2025-08-22 16:32:31 -07:00
..
2025-08-11 11:52:05 -07:00
} = exec_output ;
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
#[ derive(Serialize) ]
struct ExecMetadata {
exit_code : i32 ,
duration_seconds : f32 ,
}
#[ derive(Serialize) ]
struct ExecOutput < ' a > {
output : & ' a str ,
metadata : ExecMetadata ,
}
// round to 1 decimal place
let duration_seconds = ( ( duration . as_secs_f32 ( ) ) * 10.0 ) . round ( ) / 10.0 ;
2025-08-22 16:32:31 -07:00
let formatted_output = format_exec_output_str ( exec_output ) ;
2025-08-11 11:52:05 -07:00
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
let payload = ExecOutput {
2025-08-11 11:52:05 -07:00
output : & formatted_output ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
metadata : ExecMetadata {
2025-08-22 16:32:31 -07:00
exit_code : * exit_code ,
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
duration_seconds ,
} ,
} ;
2025-05-12 08:45:46 -07:00
#[ expect(clippy::expect_used) ]
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
serde_json ::to_string ( & payload ) . expect ( " serialize ExecOutput " )
}
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
2025-09-12 13:07:10 -07:00
pub ( super ) fn get_last_assistant_message_from_turn ( responses : & [ ResponseItem ] ) -> Option < String > {
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
responses . iter ( ) . rev ( ) . find_map ( | item | {
2025-07-23 10:37:45 -07:00
if let ResponseItem ::Message { role , content , .. } = item {
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
if role = = " assistant " {
content . iter ( ) . rev ( ) . find_map ( | ci | {
if let ContentItem ::OutputText { text } = ci {
Some ( text . clone ( ) )
} else {
None
}
} )
} else {
None
}
} else {
None
}
} )
}
2025-08-22 14:10:18 -07:00
fn convert_call_tool_result_to_function_call_output_payload (
call_tool_result : & CallToolResult ,
) -> FunctionCallOutputPayload {
let CallToolResult {
content ,
is_error ,
structured_content ,
} = call_tool_result ;
// In terms of what to send back to the model, we prefer structured_content,
// if available, and fallback to content, otherwise.
let mut is_success = is_error ! = & Some ( true ) ;
let content = if let Some ( structured_content ) = structured_content
& & structured_content ! = & serde_json ::Value ::Null
& & let Ok ( serialized_structured_content ) = serde_json ::to_string ( & structured_content )
{
serialized_structured_content
} else {
match serde_json ::to_string ( & content ) {
Ok ( serialized_content ) = > serialized_content ,
Err ( err ) = > {
// If we could not serialize either content or structured_content to
// JSON, flag this as an error.
is_success = false ;
err . to_string ( )
}
}
} ;
FunctionCallOutputPayload {
content ,
success : Some ( is_success ) ,
}
}
2025-09-16 18:43:32 -07:00
/// Emits an ExitedReviewMode Event with optional ReviewOutput,
/// and records a developer message with the review output.
2025-09-26 15:49:08 +02:00
pub ( crate ) async fn exit_review_mode (
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
session : Arc < Session > ,
task_sub_id : String ,
2025-09-14 17:34:33 -07:00
review_output : Option < ReviewOutputEvent > ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
) {
let event = Event {
id : task_sub_id ,
2025-09-16 18:43:32 -07:00
msg : EventMsg ::ExitedReviewMode ( ExitedReviewModeEvent {
review_output : review_output . clone ( ) ,
} ) ,
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
} ;
session . send_event ( event ) . await ;
2025-09-16 18:43:32 -07:00
let mut user_message = String ::new ( ) ;
if let Some ( out ) = review_output {
let mut findings_str = String ::new ( ) ;
let text = out . overall_explanation . trim ( ) ;
if ! text . is_empty ( ) {
findings_str . push_str ( text ) ;
}
if ! out . findings . is_empty ( ) {
let block = format_review_findings_block ( & out . findings , None ) ;
findings_str . push_str ( & format! ( " \n {block} " ) ) ;
}
user_message . push_str ( & format! (
r #" <user_action>
< context > User initiated a review task . Here ' s the full review output from reviewer model . User may select one or more comments to resolve . < / context >
< action > review < / action >
< results >
{ findings_str }
< / results >
2025-09-18 14:14:16 -07:00
< / user_action >
2025-09-16 18:43:32 -07:00
" #));
} else {
user_message . push_str ( r #" <user_action>
< context > User initiated a review task , but was interrupted . If user asks about this , tell them to re - initiate a review with ` / review ` and wait for it to complete . < / context >
< action > review < / action >
< results >
None .
< / results >
2025-09-18 14:14:16 -07:00
< / user_action >
2025-09-16 18:43:32 -07:00
" #);
}
session
. record_conversation_items ( & [ ResponseItem ::Message {
id : None ,
role : " user " . to_string ( ) ,
content : vec ! [ ContentItem ::InputText { text : user_message } ] ,
} ] )
. await ;
Review Mode (Core) (#3401)
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
2025-09-12 16:25:10 -07:00
}
2025-09-18 13:55:53 -07:00
#[ cfg(test) ]
pub ( crate ) use tests ::make_session_and_context ;
2025-08-22 14:10:18 -07:00
#[ cfg(test) ]
mod tests {
use super ::* ;
2025-09-14 09:23:31 -04:00
use crate ::config ::ConfigOverrides ;
use crate ::config ::ConfigToml ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
2025-09-14 09:23:31 -04:00
use crate ::protocol ::CompactedItem ;
use crate ::protocol ::InitialHistory ;
use crate ::protocol ::ResumedHistory ;
2025-09-26 15:49:08 +02:00
use crate ::state ::TaskKind ;
use crate ::tasks ::SessionTask ;
use crate ::tasks ::SessionTaskContext ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
use codex_protocol ::mcp_protocol ::AuthMode ;
2025-09-14 09:23:31 -04:00
use codex_protocol ::models ::ContentItem ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
use codex_protocol ::models ::ResponseItem ;
2025-08-22 14:10:18 -07:00
use mcp_types ::ContentBlock ;
use mcp_types ::TextContent ;
use pretty_assertions ::assert_eq ;
2025-09-18 17:08:28 -07:00
use serde ::Deserialize ;
2025-08-22 14:10:18 -07:00
use serde_json ::json ;
2025-09-14 09:23:31 -04:00
use std ::path ::PathBuf ;
use std ::sync ::Arc ;
2025-08-23 09:54:31 -07:00
use std ::time ::Duration as StdDuration ;
2025-09-26 15:49:08 +02:00
use tokio ::time ::Duration ;
use tokio ::time ::sleep ;
2025-08-22 14:10:18 -07:00
2025-09-14 09:23:31 -04:00
#[ test ]
fn reconstruct_history_matches_live_compactions ( ) {
let ( session , turn_context ) = make_session_and_context ( ) ;
let ( rollout_items , expected ) = sample_rollout ( & session , & turn_context ) ;
let reconstructed = session . reconstruct_history_from_rollout ( & turn_context , & rollout_items ) ;
assert_eq! ( expected , reconstructed ) ;
}
#[ test ]
fn record_initial_history_reconstructs_resumed_transcript ( ) {
let ( session , turn_context ) = make_session_and_context ( ) ;
let ( rollout_items , expected ) = sample_rollout ( & session , & turn_context ) ;
tokio_test ::block_on ( session . record_initial_history (
& turn_context ,
InitialHistory ::Resumed ( ResumedHistory {
conversation_id : ConversationId ::default ( ) ,
history : rollout_items ,
rollout_path : PathBuf ::from ( " /tmp/resume.jsonl " ) ,
} ) ,
) ) ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let actual = tokio_test ::block_on ( async { session . state . lock ( ) . await . history_snapshot ( ) } ) ;
2025-09-14 09:23:31 -04:00
assert_eq! ( expected , actual ) ;
}
#[ test ]
fn record_initial_history_reconstructs_forked_transcript ( ) {
let ( session , turn_context ) = make_session_and_context ( ) ;
let ( rollout_items , expected ) = sample_rollout ( & session , & turn_context ) ;
tokio_test ::block_on (
session . record_initial_history ( & turn_context , InitialHistory ::Forked ( rollout_items ) ) ,
) ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let actual = tokio_test ::block_on ( async { session . state . lock ( ) . await . history_snapshot ( ) } ) ;
2025-09-14 09:23:31 -04:00
assert_eq! ( expected , actual ) ;
2025-08-22 14:10:18 -07:00
}
#[ test ]
fn prefers_structured_content_when_present ( ) {
let ctr = CallToolResult {
// Content present but should be ignored because structured_content is set.
content : vec ! [ text_block ( " ignored " ) ] ,
is_error : None ,
structured_content : Some ( json! ( {
" ok " : true ,
" value " : 42
} ) ) ,
} ;
let got = convert_call_tool_result_to_function_call_output_payload ( & ctr ) ;
let expected = FunctionCallOutputPayload {
content : serde_json ::to_string ( & json! ( {
" ok " : true ,
" value " : 42
} ) )
. unwrap ( ) ,
success : Some ( true ) ,
} ;
assert_eq! ( expected , got ) ;
}
2025-08-23 09:54:31 -07:00
#[ test ]
fn model_truncation_head_tail_by_lines ( ) {
// Build 400 short lines so line-count limit, not byte budget, triggers truncation
let lines : Vec < String > = ( 1 ..= 400 ) . map ( | i | format! ( " line {i} " ) ) . collect ( ) ;
let full = lines . join ( " \n " ) ;
let exec = ExecToolCallOutput {
exit_code : 0 ,
stdout : StreamOutput ::new ( String ::new ( ) ) ,
stderr : StreamOutput ::new ( String ::new ( ) ) ,
2025-09-11 11:59:37 -07:00
aggregated_output : StreamOutput ::new ( full ) ,
2025-08-23 09:54:31 -07:00
duration : StdDuration ::from_secs ( 1 ) ,
2025-09-14 14:38:26 -07:00
timed_out : false ,
2025-08-23 09:54:31 -07:00
} ;
let out = format_exec_output_str ( & exec ) ;
// Expect elision marker with correct counts
let omitted = 400 - MODEL_FORMAT_MAX_LINES ; // 144
let marker = format! ( " \n [... omitted {omitted} of 400 lines ...] \n \n " ) ;
assert! ( out . contains ( & marker ) , " missing marker: {out} " ) ;
// Validate head and tail
let parts : Vec < & str > = out . split ( & marker ) . collect ( ) ;
assert_eq! ( parts . len ( ) , 2 , " expected one marker split " ) ;
let head = parts [ 0 ] ;
let tail = parts [ 1 ] ;
let expected_head : String = ( 1 ..= MODEL_FORMAT_HEAD_LINES )
. map ( | i | format! ( " line {i} " ) )
. collect ::< Vec < _ > > ( )
. join ( " \n " ) ;
assert! ( head . starts_with ( & expected_head ) , " head mismatch " ) ;
let expected_tail : String = ( ( 400 - MODEL_FORMAT_TAIL_LINES + 1 ) ..= 400 )
. map ( | i | format! ( " line {i} " ) )
. collect ::< Vec < _ > > ( )
. join ( " \n " ) ;
assert! ( tail . ends_with ( & expected_tail ) , " tail mismatch " ) ;
}
#[ test ]
fn model_truncation_respects_byte_budget ( ) {
// Construct a large output (about 100kB) so byte budget dominates
let big_line = " x " . repeat ( 100 ) ;
2025-09-11 11:59:37 -07:00
let full = std ::iter ::repeat_n ( big_line , 1000 )
2025-08-23 09:54:31 -07:00
. collect ::< Vec < _ > > ( )
. join ( " \n " ) ;
let exec = ExecToolCallOutput {
exit_code : 0 ,
stdout : StreamOutput ::new ( String ::new ( ) ) ,
stderr : StreamOutput ::new ( String ::new ( ) ) ,
aggregated_output : StreamOutput ::new ( full . clone ( ) ) ,
duration : StdDuration ::from_secs ( 1 ) ,
2025-09-14 14:38:26 -07:00
timed_out : false ,
2025-08-23 09:54:31 -07:00
} ;
let out = format_exec_output_str ( & exec ) ;
assert! ( out . len ( ) < = MODEL_FORMAT_MAX_BYTES , " exceeds byte budget " ) ;
assert! ( out . contains ( " omitted " ) , " should contain elision marker " ) ;
// Ensure head and tail are drawn from the original
assert! ( full . starts_with ( out . chars ( ) . take ( 8 ) . collect ::< String > ( ) . as_str ( ) ) ) ;
assert! (
full . ends_with (
out . chars ( )
. rev ( )
. take ( 8 )
. collect ::< String > ( )
. chars ( )
. rev ( )
. collect ::< String > ( )
. as_str ( )
)
) ;
}
2025-09-14 14:38:26 -07:00
#[ test ]
fn includes_timed_out_message ( ) {
let exec = ExecToolCallOutput {
exit_code : 0 ,
stdout : StreamOutput ::new ( String ::new ( ) ) ,
stderr : StreamOutput ::new ( String ::new ( ) ) ,
aggregated_output : StreamOutput ::new ( " Command output " . to_string ( ) ) ,
duration : StdDuration ::from_secs ( 1 ) ,
timed_out : true ,
} ;
let out = format_exec_output_str ( & exec ) ;
assert_eq! (
out ,
" command timed out after 1000 milliseconds \n Command output "
) ;
}
2025-08-22 14:10:18 -07:00
#[ test ]
fn falls_back_to_content_when_structured_is_null ( ) {
let ctr = CallToolResult {
content : vec ! [ text_block ( " hello " ) , text_block ( " world " ) ] ,
is_error : None ,
structured_content : Some ( serde_json ::Value ::Null ) ,
} ;
let got = convert_call_tool_result_to_function_call_output_payload ( & ctr ) ;
let expected = FunctionCallOutputPayload {
content : serde_json ::to_string ( & vec! [ text_block ( " hello " ) , text_block ( " world " ) ] )
. unwrap ( ) ,
success : Some ( true ) ,
} ;
assert_eq! ( expected , got ) ;
}
#[ test ]
fn success_flag_reflects_is_error_true ( ) {
let ctr = CallToolResult {
content : vec ! [ text_block ( " unused " ) ] ,
is_error : Some ( true ) ,
structured_content : Some ( json! ( { " message " : " bad " } ) ) ,
} ;
let got = convert_call_tool_result_to_function_call_output_payload ( & ctr ) ;
let expected = FunctionCallOutputPayload {
content : serde_json ::to_string ( & json! ( { " message " : " bad " } ) ) . unwrap ( ) ,
success : Some ( false ) ,
} ;
assert_eq! ( expected , got ) ;
}
#[ test ]
fn success_flag_true_with_no_error_and_content_used ( ) {
let ctr = CallToolResult {
content : vec ! [ text_block ( " alpha " ) ] ,
is_error : Some ( false ) ,
structured_content : None ,
} ;
let got = convert_call_tool_result_to_function_call_output_payload ( & ctr ) ;
let expected = FunctionCallOutputPayload {
content : serde_json ::to_string ( & vec! [ text_block ( " alpha " ) ] ) . unwrap ( ) ,
success : Some ( true ) ,
} ;
assert_eq! ( expected , got ) ;
}
2025-09-14 09:23:31 -04:00
fn text_block ( s : & str ) -> ContentBlock {
ContentBlock ::TextContent ( TextContent {
annotations : None ,
text : s . to_string ( ) ,
r#type : " text " . to_string ( ) ,
} )
}
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
fn otel_event_manager ( conversation_id : ConversationId , config : & Config ) -> OtelEventManager {
OtelEventManager ::new (
conversation_id ,
config . model . as_str ( ) ,
config . model_family . slug . as_str ( ) ,
None ,
Some ( AuthMode ::ChatGPT ) ,
false ,
" test " . to_string ( ) ,
)
}
2025-09-18 13:55:53 -07:00
pub ( crate ) fn make_session_and_context ( ) -> ( Session , TurnContext ) {
2025-09-14 09:23:31 -04:00
let ( tx_event , _rx_event ) = async_channel ::unbounded ( ) ;
let codex_home = tempfile ::tempdir ( ) . expect ( " create temp dir " ) ;
let config = Config ::load_from_base_config_with_overrides (
ConfigToml ::default ( ) ,
ConfigOverrides ::default ( ) ,
codex_home . path ( ) . to_path_buf ( ) ,
)
. expect ( " load default test config " ) ;
let config = Arc ::new ( config ) ;
let conversation_id = ConversationId ::default ( ) ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let otel_event_manager = otel_event_manager ( conversation_id , config . as_ref ( ) ) ;
2025-09-14 09:23:31 -04:00
let client = ModelClient ::new (
config . clone ( ) ,
None ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager ,
2025-09-14 09:23:31 -04:00
config . model_provider . clone ( ) ,
config . model_reasoning_effort ,
config . model_reasoning_summary ,
conversation_id ,
) ;
let tools_config = ToolsConfig ::new ( & ToolsConfigParams {
model_family : & config . model_family ,
include_plan_tool : config . include_plan_tool ,
include_apply_patch_tool : config . include_apply_patch_tool ,
include_web_search_request : config . tools_web_search_request ,
use_streamable_shell_tool : config . use_experimental_streamable_shell_tool ,
include_view_image_tool : config . include_view_image_tool ,
experimental_unified_exec_tool : config . use_experimental_unified_exec_tool ,
} ) ;
let turn_context = TurnContext {
client ,
cwd : config . cwd . clone ( ) ,
base_instructions : config . base_instructions . clone ( ) ,
user_instructions : config . user_instructions . clone ( ) ,
approval_policy : config . approval_policy ,
sandbox_policy : config . sandbox_policy . clone ( ) ,
shell_environment_policy : config . shell_environment_policy . clone ( ) ,
tools_config ,
is_review_mode : false ,
2025-09-23 13:59:16 -07:00
final_output_json_schema : None ,
2025-09-14 09:23:31 -04:00
} ;
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
let services = SessionServices {
2025-09-14 09:23:31 -04:00
mcp_connection_manager : McpConnectionManager ::default ( ) ,
session_manager : ExecSessionManager ::default ( ) ,
unified_exec_manager : UnifiedExecSessionManager ::default ( ) ,
2025-09-23 07:25:46 -07:00
notifier : UserNotifier ::default ( ) ,
2025-09-14 09:23:31 -04:00
rollout : Mutex ::new ( None ) ,
codex_linux_sandbox_exe : None ,
user_shell : shell ::Shell ::Unknown ,
show_raw_agent_reasoning : config . show_raw_agent_reasoning ,
ref: full state refactor (#4174)
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.
2025-09-25 11:16:06 +01:00
} ;
let session = Session {
conversation_id ,
tx_event ,
state : Mutex ::new ( SessionState ::new ( ) ) ,
active_turn : Mutex ::new ( None ) ,
services ,
2025-09-18 18:21:52 +01:00
next_internal_sub_id : AtomicU64 ::new ( 0 ) ,
2025-09-14 09:23:31 -04:00
} ;
( session , turn_context )
}
2025-09-26 15:49:08 +02:00
// Like make_session_and_context, but returns Arc<Session> and the event receiver
// so tests can assert on emitted events.
fn make_session_and_context_with_rx ( ) -> (
Arc < Session > ,
Arc < TurnContext > ,
async_channel ::Receiver < Event > ,
) {
let ( tx_event , rx_event ) = async_channel ::unbounded ( ) ;
let codex_home = tempfile ::tempdir ( ) . expect ( " create temp dir " ) ;
let config = Config ::load_from_base_config_with_overrides (
ConfigToml ::default ( ) ,
ConfigOverrides ::default ( ) ,
codex_home . path ( ) . to_path_buf ( ) ,
)
. expect ( " load default test config " ) ;
let config = Arc ::new ( config ) ;
let conversation_id = ConversationId ::default ( ) ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let otel_event_manager = otel_event_manager ( conversation_id , config . as_ref ( ) ) ;
2025-09-26 15:49:08 +02:00
let client = ModelClient ::new (
config . clone ( ) ,
None ,
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
otel_event_manager ,
2025-09-26 15:49:08 +02:00
config . model_provider . clone ( ) ,
config . model_reasoning_effort ,
config . model_reasoning_summary ,
conversation_id ,
) ;
let tools_config = ToolsConfig ::new ( & ToolsConfigParams {
model_family : & config . model_family ,
include_plan_tool : config . include_plan_tool ,
include_apply_patch_tool : config . include_apply_patch_tool ,
include_web_search_request : config . tools_web_search_request ,
use_streamable_shell_tool : config . use_experimental_streamable_shell_tool ,
include_view_image_tool : config . include_view_image_tool ,
experimental_unified_exec_tool : config . use_experimental_unified_exec_tool ,
} ) ;
let turn_context = Arc ::new ( TurnContext {
client ,
cwd : config . cwd . clone ( ) ,
base_instructions : config . base_instructions . clone ( ) ,
user_instructions : config . user_instructions . clone ( ) ,
approval_policy : config . approval_policy ,
sandbox_policy : config . sandbox_policy . clone ( ) ,
shell_environment_policy : config . shell_environment_policy . clone ( ) ,
tools_config ,
is_review_mode : false ,
final_output_json_schema : None ,
} ) ;
let services = SessionServices {
mcp_connection_manager : McpConnectionManager ::default ( ) ,
session_manager : ExecSessionManager ::default ( ) ,
unified_exec_manager : UnifiedExecSessionManager ::default ( ) ,
notifier : UserNotifier ::default ( ) ,
rollout : Mutex ::new ( None ) ,
codex_linux_sandbox_exe : None ,
user_shell : shell ::Shell ::Unknown ,
show_raw_agent_reasoning : config . show_raw_agent_reasoning ,
} ;
let session = Arc ::new ( Session {
conversation_id ,
tx_event ,
state : Mutex ::new ( SessionState ::new ( ) ) ,
active_turn : Mutex ::new ( None ) ,
services ,
next_internal_sub_id : AtomicU64 ::new ( 0 ) ,
} ) ;
( session , turn_context , rx_event )
}
#[ derive(Clone, Copy) ]
struct NeverEndingTask ( TaskKind ) ;
#[ async_trait::async_trait ]
impl SessionTask for NeverEndingTask {
fn kind ( & self ) -> TaskKind {
self . 0
}
async fn run (
self : Arc < Self > ,
_session : Arc < SessionTaskContext > ,
_ctx : Arc < TurnContext > ,
_sub_id : String ,
_input : Vec < InputItem > ,
) -> Option < String > {
loop {
sleep ( Duration ::from_secs ( 60 ) ) . await ;
}
}
async fn abort ( & self , session : Arc < SessionTaskContext > , sub_id : & str ) {
if let TaskKind ::Review = self . 0 {
exit_review_mode ( session . clone_session ( ) , sub_id . to_string ( ) , None ) . await ;
}
}
}
#[ tokio::test ]
async fn abort_regular_task_emits_turn_aborted_only ( ) {
let ( sess , tc , rx ) = make_session_and_context_with_rx ( ) ;
let sub_id = " sub-regular " . to_string ( ) ;
let input = vec! [ InputItem ::Text {
text : " hello " . to_string ( ) ,
} ] ;
sess . spawn_task (
Arc ::clone ( & tc ) ,
sub_id . clone ( ) ,
input ,
NeverEndingTask ( TaskKind ::Regular ) ,
)
. await ;
sess . abort_all_tasks ( TurnAbortReason ::Interrupted ) . await ;
let evt = rx . recv ( ) . await . expect ( " event " ) ;
match evt . msg {
EventMsg ::TurnAborted ( e ) = > assert_eq! ( TurnAbortReason ::Interrupted , e . reason ) ,
other = > panic! ( " unexpected event: {other:?} " ) ,
}
assert! ( rx . try_recv ( ) . is_err ( ) ) ;
}
#[ tokio::test ]
async fn abort_review_task_emits_exited_then_aborted_and_records_history ( ) {
let ( sess , tc , rx ) = make_session_and_context_with_rx ( ) ;
let sub_id = " sub-review " . to_string ( ) ;
let input = vec! [ InputItem ::Text {
text : " start review " . to_string ( ) ,
} ] ;
sess . spawn_task (
Arc ::clone ( & tc ) ,
sub_id . clone ( ) ,
input ,
NeverEndingTask ( TaskKind ::Review ) ,
)
. await ;
sess . abort_all_tasks ( TurnAbortReason ::Interrupted ) . await ;
let first = rx . recv ( ) . await . expect ( " first event " ) ;
match first . msg {
EventMsg ::ExitedReviewMode ( ev ) = > assert! ( ev . review_output . is_none ( ) ) ,
other = > panic! ( " unexpected first event: {other:?} " ) ,
}
let second = rx . recv ( ) . await . expect ( " second event " ) ;
match second . msg {
EventMsg ::TurnAborted ( e ) = > assert_eq! ( TurnAbortReason ::Interrupted , e . reason ) ,
other = > panic! ( " unexpected second event: {other:?} " ) ,
}
let history = sess . history_snapshot ( ) . await ;
let found = history . iter ( ) . any ( | item | match item {
ResponseItem ::Message { role , content , .. } if role = = " user " = > {
content . iter ( ) . any ( | ci | match ci {
ContentItem ::InputText { text } = > {
text . contains ( " <user_action> " )
& & text . contains ( " review " )
& & text . contains ( " interrupted " )
}
_ = > false ,
} )
}
_ = > false ,
} ) ;
assert! (
found ,
" synthetic review interruption not recorded in history "
) ;
}
2025-09-14 09:23:31 -04:00
fn sample_rollout (
session : & Session ,
turn_context : & TurnContext ,
) -> ( Vec < RolloutItem > , Vec < ResponseItem > ) {
let mut rollout_items = Vec ::new ( ) ;
let mut live_history = ConversationHistory ::new ( ) ;
let initial_context = session . build_initial_context ( turn_context ) ;
for item in & initial_context {
rollout_items . push ( RolloutItem ::ResponseItem ( item . clone ( ) ) ) ;
}
live_history . record_items ( initial_context . iter ( ) ) ;
let user1 = ResponseItem ::Message {
id : None ,
role : " user " . to_string ( ) ,
content : vec ! [ ContentItem ::InputText {
text : " first user " . to_string ( ) ,
} ] ,
} ;
live_history . record_items ( std ::iter ::once ( & user1 ) ) ;
rollout_items . push ( RolloutItem ::ResponseItem ( user1 . clone ( ) ) ) ;
let assistant1 = ResponseItem ::Message {
id : None ,
role : " assistant " . to_string ( ) ,
content : vec ! [ ContentItem ::OutputText {
text : " assistant reply one " . to_string ( ) ,
} ] ,
} ;
live_history . record_items ( std ::iter ::once ( & assistant1 ) ) ;
rollout_items . push ( RolloutItem ::ResponseItem ( assistant1 . clone ( ) ) ) ;
let summary1 = " summary one " ;
let snapshot1 = live_history . contents ( ) ;
let user_messages1 = collect_user_messages ( & snapshot1 ) ;
let rebuilt1 = build_compacted_history (
session . build_initial_context ( turn_context ) ,
& user_messages1 ,
summary1 ,
) ;
live_history . replace ( rebuilt1 ) ;
rollout_items . push ( RolloutItem ::Compacted ( CompactedItem {
message : summary1 . to_string ( ) ,
} ) ) ;
let user2 = ResponseItem ::Message {
id : None ,
role : " user " . to_string ( ) ,
content : vec ! [ ContentItem ::InputText {
text : " second user " . to_string ( ) ,
} ] ,
} ;
live_history . record_items ( std ::iter ::once ( & user2 ) ) ;
rollout_items . push ( RolloutItem ::ResponseItem ( user2 . clone ( ) ) ) ;
let assistant2 = ResponseItem ::Message {
id : None ,
role : " assistant " . to_string ( ) ,
content : vec ! [ ContentItem ::OutputText {
text : " assistant reply two " . to_string ( ) ,
} ] ,
} ;
live_history . record_items ( std ::iter ::once ( & assistant2 ) ) ;
rollout_items . push ( RolloutItem ::ResponseItem ( assistant2 . clone ( ) ) ) ;
let summary2 = " summary two " ;
let snapshot2 = live_history . contents ( ) ;
let user_messages2 = collect_user_messages ( & snapshot2 ) ;
let rebuilt2 = build_compacted_history (
session . build_initial_context ( turn_context ) ,
& user_messages2 ,
summary2 ,
) ;
live_history . replace ( rebuilt2 ) ;
rollout_items . push ( RolloutItem ::Compacted ( CompactedItem {
message : summary2 . to_string ( ) ,
} ) ) ;
let user3 = ResponseItem ::Message {
id : None ,
role : " user " . to_string ( ) ,
content : vec ! [ ContentItem ::InputText {
text : " third user " . to_string ( ) ,
} ] ,
} ;
live_history . record_items ( std ::iter ::once ( & user3 ) ) ;
rollout_items . push ( RolloutItem ::ResponseItem ( user3 . clone ( ) ) ) ;
let assistant3 = ResponseItem ::Message {
id : None ,
role : " assistant " . to_string ( ) ,
content : vec ! [ ContentItem ::OutputText {
text : " assistant reply three " . to_string ( ) ,
} ] ,
} ;
live_history . record_items ( std ::iter ::once ( & assistant3 ) ) ;
rollout_items . push ( RolloutItem ::ResponseItem ( assistant3 . clone ( ) ) ) ;
( rollout_items , live_history . contents ( ) )
}
2025-09-18 17:08:28 -07:00
#[ tokio::test ]
async fn rejects_escalated_permissions_when_policy_not_on_request ( ) {
use crate ::exec ::ExecParams ;
use crate ::protocol ::AskForApproval ;
use crate ::protocol ::SandboxPolicy ;
use crate ::turn_diff_tracker ::TurnDiffTracker ;
use std ::collections ::HashMap ;
let ( session , mut turn_context ) = make_session_and_context ( ) ;
// Ensure policy is NOT OnRequest so the early rejection path triggers
turn_context . approval_policy = AskForApproval ::OnFailure ;
let params = ExecParams {
command : if cfg! ( windows ) {
vec! [
" cmd.exe " . to_string ( ) ,
" /C " . to_string ( ) ,
" echo hi " . to_string ( ) ,
]
} else {
vec! [
" /bin/sh " . to_string ( ) ,
" -c " . to_string ( ) ,
" echo hi " . to_string ( ) ,
]
} ,
cwd : turn_context . cwd . clone ( ) ,
timeout_ms : Some ( 1000 ) ,
env : HashMap ::new ( ) ,
with_escalated_permissions : Some ( true ) ,
justification : Some ( " test " . to_string ( ) ) ,
} ;
let params2 = ExecParams {
with_escalated_permissions : Some ( false ) ,
.. params . clone ( )
} ;
let mut turn_diff_tracker = TurnDiffTracker ::new ( ) ;
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
let tool_name = " shell " ;
2025-09-18 17:08:28 -07:00
let sub_id = " test-sub " . to_string ( ) ;
let call_id = " test-call " . to_string ( ) ;
let resp = handle_container_exec_with_params (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
tool_name ,
2025-09-18 17:08:28 -07:00
params ,
& session ,
& turn_context ,
& mut turn_diff_tracker ,
sub_id ,
call_id ,
)
. await ;
2025-09-24 10:27:35 -07:00
let Err ( FunctionCallError ::RespondToModel ( output ) ) = resp else {
panic! ( " expected error result " ) ;
2025-09-18 17:08:28 -07:00
} ;
let expected = format! (
" approval policy is {policy:?}; reject command — you should not ask for escalated permissions if the approval policy is {policy:?} " ,
policy = turn_context . approval_policy
) ;
2025-09-24 10:27:35 -07:00
pretty_assertions ::assert_eq! ( output , expected ) ;
2025-09-18 17:08:28 -07:00
// Now retry the same command WITHOUT escalated permissions; should succeed.
// Force DangerFullAccess to avoid platform sandbox dependencies in tests.
turn_context . sandbox_policy = SandboxPolicy ::DangerFullAccess ;
let resp2 = handle_container_exec_with_params (
OpenTelemetry events (#2103)
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
2025-09-29 19:30:55 +01:00
tool_name ,
2025-09-18 17:08:28 -07:00
params2 ,
& session ,
& turn_context ,
& mut turn_diff_tracker ,
" test-sub " . to_string ( ) ,
" test-call-2 " . to_string ( ) ,
)
. await ;
2025-09-24 10:27:35 -07:00
let output = resp2 . expect ( " expected Ok result " ) ;
2025-09-18 17:08:28 -07:00
#[ derive(Deserialize, PartialEq, Eq, Debug) ]
struct ResponseExecMetadata {
exit_code : i32 ,
}
#[ derive(Deserialize) ]
struct ResponseExecOutput {
output : String ,
metadata : ResponseExecMetadata ,
}
let exec_output : ResponseExecOutput =
2025-09-24 10:27:35 -07:00
serde_json ::from_str ( & output ) . expect ( " valid exec output json " ) ;
2025-09-18 17:08:28 -07:00
pretty_assertions ::assert_eq! ( exec_output . metadata , ResponseExecMetadata { exit_code : 0 } ) ;
assert! ( exec_output . output . contains ( " hi " ) ) ;
}
2025-08-22 14:10:18 -07:00
}