feat: add Flux image generation function for Open WebUI

- Add flux_image_gen.py manifold function for Flux.1 Schnell
- Auto-mount functions via Docker volume (./functions:/app/backend/data/functions:ro)
- Add comprehensive setup guide in FLUX_SETUP.md
- Update CLAUDE.md with Flux integration documentation
- Infrastructure as code approach - no manual import needed

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-11-21 20:20:33 +01:00
parent 0999e5d29f
commit 9a964cff3c
4 changed files with 357 additions and 0 deletions

View File

@@ -476,11 +476,28 @@ AI infrastructure with Open WebUI, Crawl4AI, and dedicated PostgreSQL with pgvec
4. Use web search feature for current information
5. Integrate with n8n workflows for automation
**Flux Image Generation** (`functions/flux_image_gen.py`):
Open WebUI function for generating images via Flux.1 Schnell on RunPod GPU:
- Manifold function adds "Flux.1 Schnell (4-5s)" model to Open WebUI
- Routes requests through LiteLLM → Orchestrator → RunPod Flux
- Generates 1024x1024 images in 4-5 seconds
- Returns images as base64-encoded markdown
- Configuration via Valves (API base, timeout, default size)
- **Automatically loaded via Docker volume mount** (`./functions:/app/backend/data/functions:ro`)
**Deployment**:
- Function file tracked in `ai/functions/` directory
- Automatically available after `pnpm arty up -d ai_webui`
- No manual import required - infrastructure as code
See `ai/FLUX_SETUP.md` for detailed setup instructions and troubleshooting.
**Integration Points**:
- **n8n**: Workflow automation with AI tasks (scraping, RAG ingestion, webhooks)
- **Mattermost**: Can send AI-generated notifications via webhooks
- **Crawl4AI**: Internal API for advanced web scraping
- **Claude API**: Primary LLM provider via Anthropic
- **Flux via RunPod**: Image generation through orchestrator (GPU server)
**Future Enhancements**:
- GPU server integration (IONOS A10 planned)

181
ai/FLUX_SETUP.md Normal file
View File

@@ -0,0 +1,181 @@
# Flux Image Generation Setup for Open WebUI
This guide explains how to add Flux.1 Schnell image generation to your Open WebUI installation.
## Architecture
```
Open WebUI → flux_image_gen.py Function → LiteLLM (port 4000) → Orchestrator (RunPod port 9000) → Flux Model
```
## Installation
### Automatic (via Docker Compose)
The Flux function is **automatically loaded** via Docker volume mount. No manual upload needed!
**How it works:**
- Function file: `ai/functions/flux_image_gen.py`
- Mounted to: `/app/backend/data/functions/` in the container (read-only)
- Open WebUI automatically discovers and loads functions from this directory on startup
**To deploy:**
```bash
cd ~/Projects/docker-compose
pnpm arty up -d ai_webui # Restart Open WebUI to load function
```
### Verify Installation
After restarting Open WebUI, the function should automatically appear in:
1. **Admin Settings → Functions**: Listed as "Flux Image Generator"
2. **Model dropdown**: "Flux.1 Schnell (4-5s)" available for selection
If you don't see it:
```bash
# Check if function is mounted correctly
docker exec ai_webui ls -la /app/backend/data/functions/
# Check logs for any loading errors
docker logs ai_webui | grep -i flux
```
## Usage
### Basic Image Generation
1. **Select the Flux model:**
- In Open WebUI chat, select "Flux.1 Schnell (4-5s)" from the model dropdown
2. **Send your prompt:**
```
A serene mountain landscape at sunset with vibrant colors
```
3. **Wait for generation:**
- The function will call LiteLLM → Orchestrator → RunPod Flux
- Image appears in 4-5 seconds
### Advanced Options
The function supports custom sizes (configure in Valves):
- `1024x1024` (default, square)
- `1024x768` (landscape)
- `768x1024` (portrait)
## Configuration
### Valves (Customization)
To customize function behavior:
1. **Access Open WebUI**:
- Go to https://ai.pivoine.art
- Profile → Settings → Admin Settings → Functions
2. **Find Flux Image Generator**:
- Click on "Flux Image Generator" in the functions list
- Go to "Valves" tab
3. **Available Settings:**
- `LITELLM_API_BASE`: LiteLLM endpoint (default: `http://litellm:4000/v1`)
- `LITELLM_API_KEY`: API key (default: `dummy` - not needed for internal use)
- `DEFAULT_MODEL`: Model name (default: `flux-schnell`)
- `DEFAULT_SIZE`: Image dimensions (default: `1024x1024`)
- `TIMEOUT`: Request timeout in seconds (default: `120`)
## Troubleshooting
### Function not appearing in model list
**Check:**
1. Function is enabled in Admin Settings → Functions
2. Function has no syntax errors (check logs)
3. Refresh browser cache (Ctrl+Shift+R)
### Image generation fails
**Check:**
1. LiteLLM is running: `docker ps | grep litellm`
2. LiteLLM can reach orchestrator: Check `docker logs ai_litellm`
3. Orchestrator is running on RunPod
4. Flux model is loaded: Check orchestrator logs
**Test LiteLLM directly:**
```bash
curl -X POST http://localhost:4000/v1/images/generations \
-H 'Content-Type: application/json' \
-d '{
"model": "flux-schnell",
"prompt": "A test image",
"size": "1024x1024"
}'
```
### Timeout errors
The default timeout is 120 seconds. If you're getting timeouts:
1. **Increase timeout in Valves:**
- Set `TIMEOUT` to `180` or higher
2. **Check Orchestrator status:**
- Flux model may still be loading (takes ~1 minute on first request)
## Technical Details
### How it Works
1. **User sends prompt** in Open WebUI chat interface
2. **Function extracts prompt** from messages array
3. **Function calls LiteLLM** `/v1/images/generations` endpoint
4. **LiteLLM routes to Orchestrator** via config (`http://100.121.199.88:9000/v1`)
5. **Orchestrator loads Flux** on RunPod GPU (if not already running)
6. **Flux generates image** in 4-5 seconds
7. **Image returns as base64** through the chain
8. **Function displays image** as markdown in chat
### Request Flow
```json
// Function sends to LiteLLM:
{
"model": "flux-schnell",
"prompt": "A serene mountain landscape",
"size": "1024x1024",
"n": 1,
"response_format": "b64_json"
}
// LiteLLM response:
{
"data": [{
"b64_json": "iVBORw0KGgoAAAANSUhEUgAA..."
}]
}
// Function converts to markdown:
![Generated Image](...)
```
## Limitations
- **Single model**: Currently only Flux.1 Schnell is available
- **Sequential generation**: One image at a time (n=1)
- **Fixed format**: PNG format only
- **Orchestrator dependency**: Requires RunPod GPU server to be running
## Future Enhancements
Potential improvements:
- Multiple size presets in model dropdown
- Support for other Flux variants (Dev, Pro)
- Batch generation (n > 1)
- Image-to-image support
- Custom aspect ratios
## Support
- **Documentation**: `/home/valknar/Projects/docker-compose/CLAUDE.md`
- **RunPod README**: `/home/valknar/Projects/runpod/README.md`
- **LiteLLM Config**: `/home/valknar/Projects/docker-compose/ai/litellm-config.yaml`

View File

@@ -66,6 +66,7 @@ services:
volumes:
- ai_webui_data:/app/backend/data
- ./functions:/app/backend/data/functions:ro
depends_on:
- ai_postgres
- litellm

View File

@@ -0,0 +1,158 @@
"""
title: Flux Image Generator
author: Valknar
version: 1.0.0
license: MIT
description: Generate images using Flux.1 Schnell via LiteLLM
requirements: requests, pydantic
"""
import os
import base64
import json
import requests
from typing import Generator
from pydantic import BaseModel, Field
class Pipe:
"""
Flux Image Generation Function for Open WebUI
Routes image generation requests to LiteLLM → Orchestrator → RunPod Flux
"""
class Valves(BaseModel):
"""Configuration valves for the image generation function"""
LITELLM_API_BASE: str = Field(
default="http://litellm:4000/v1",
description="LiteLLM API base URL"
)
LITELLM_API_KEY: str = Field(
default="dummy",
description="LiteLLM API key (not required for internal use)"
)
DEFAULT_MODEL: str = Field(
default="flux-schnell",
description="Default model to use for image generation"
)
DEFAULT_SIZE: str = Field(
default="1024x1024",
description="Default image size"
)
TIMEOUT: int = Field(
default=120,
description="Request timeout in seconds"
)
def __init__(self):
self.type = "manifold"
self.id = "flux_image_gen"
self.name = "Flux"
self.valves = self.Valves()
def pipes(self):
"""Return available models"""
return [
{
"id": "flux-schnell",
"name": "Flux.1 Schnell (4-5s)"
}
]
def pipe(self, body: dict) -> Generator[str, None, None]:
"""
Generate images via LiteLLM endpoint
Args:
body: Request body containing model, messages, etc.
Yields:
JSON chunks with generated image data
"""
try:
# Extract the prompt from messages
messages = body.get("messages", [])
if not messages:
yield self._error_response("No messages provided")
return
# Get the last user message as prompt
prompt = messages[-1].get("content", "")
if not prompt:
yield self._error_response("No prompt provided")
return
# Prepare image generation request
image_request = {
"model": body.get("model", self.valves.DEFAULT_MODEL),
"prompt": prompt,
"size": body.get("size", self.valves.DEFAULT_SIZE),
"n": 1,
"response_format": "b64_json"
}
# Call LiteLLM images endpoint
response = requests.post(
f"{self.valves.LITELLM_API_BASE}/images/generations",
json=image_request,
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {self.valves.LITELLM_API_KEY}"
},
timeout=self.valves.TIMEOUT
)
if response.status_code != 200:
yield self._error_response(
f"Image generation failed: {response.status_code} - {response.text}"
)
return
# Parse response
result = response.json()
# Check if we got image data
if "data" not in result or len(result["data"]) == 0:
yield self._error_response("No image data in response")
return
# Get base64 image data
image_data = result["data"][0].get("b64_json")
if not image_data:
yield self._error_response("No base64 image data in response")
return
# Return image as markdown
image_markdown = f"![Generated Image](data:image/png;base64,{image_data})\n\n**Prompt:** {prompt}"
# Yield final response
yield json.dumps({
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": image_markdown
},
"finish_reason": "stop"
}]
})
except requests.Timeout:
yield self._error_response(f"Request timed out after {self.valves.TIMEOUT}s")
except requests.RequestException as e:
yield self._error_response(f"Request failed: {str(e)}")
except Exception as e:
yield self._error_response(f"Unexpected error: {str(e)}")
def _error_response(self, error_message: str) -> str:
"""Generate error response in OpenAI format"""
return json.dumps({
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": f"Error: {error_message}"
},
"finish_reason": "stop"
}]
})