feat: add Flux image generation function for Open WebUI
- Add flux_image_gen.py manifold function for Flux.1 Schnell - Auto-mount functions via Docker volume (./functions:/app/backend/data/functions:ro) - Add comprehensive setup guide in FLUX_SETUP.md - Update CLAUDE.md with Flux integration documentation - Infrastructure as code approach - no manual import needed 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
158
ai/functions/flux_image_gen.py
Normal file
158
ai/functions/flux_image_gen.py
Normal file
@@ -0,0 +1,158 @@
|
||||
"""
|
||||
title: Flux Image Generator
|
||||
author: Valknar
|
||||
version: 1.0.0
|
||||
license: MIT
|
||||
description: Generate images using Flux.1 Schnell via LiteLLM
|
||||
requirements: requests, pydantic
|
||||
"""
|
||||
|
||||
import os
|
||||
import base64
|
||||
import json
|
||||
import requests
|
||||
from typing import Generator
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class Pipe:
|
||||
"""
|
||||
Flux Image Generation Function for Open WebUI
|
||||
Routes image generation requests to LiteLLM → Orchestrator → RunPod Flux
|
||||
"""
|
||||
|
||||
class Valves(BaseModel):
|
||||
"""Configuration valves for the image generation function"""
|
||||
LITELLM_API_BASE: str = Field(
|
||||
default="http://litellm:4000/v1",
|
||||
description="LiteLLM API base URL"
|
||||
)
|
||||
LITELLM_API_KEY: str = Field(
|
||||
default="dummy",
|
||||
description="LiteLLM API key (not required for internal use)"
|
||||
)
|
||||
DEFAULT_MODEL: str = Field(
|
||||
default="flux-schnell",
|
||||
description="Default model to use for image generation"
|
||||
)
|
||||
DEFAULT_SIZE: str = Field(
|
||||
default="1024x1024",
|
||||
description="Default image size"
|
||||
)
|
||||
TIMEOUT: int = Field(
|
||||
default=120,
|
||||
description="Request timeout in seconds"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
self.type = "manifold"
|
||||
self.id = "flux_image_gen"
|
||||
self.name = "Flux"
|
||||
self.valves = self.Valves()
|
||||
|
||||
def pipes(self):
|
||||
"""Return available models"""
|
||||
return [
|
||||
{
|
||||
"id": "flux-schnell",
|
||||
"name": "Flux.1 Schnell (4-5s)"
|
||||
}
|
||||
]
|
||||
|
||||
def pipe(self, body: dict) -> Generator[str, None, None]:
|
||||
"""
|
||||
Generate images via LiteLLM endpoint
|
||||
|
||||
Args:
|
||||
body: Request body containing model, messages, etc.
|
||||
|
||||
Yields:
|
||||
JSON chunks with generated image data
|
||||
"""
|
||||
try:
|
||||
# Extract the prompt from messages
|
||||
messages = body.get("messages", [])
|
||||
if not messages:
|
||||
yield self._error_response("No messages provided")
|
||||
return
|
||||
|
||||
# Get the last user message as prompt
|
||||
prompt = messages[-1].get("content", "")
|
||||
if not prompt:
|
||||
yield self._error_response("No prompt provided")
|
||||
return
|
||||
|
||||
# Prepare image generation request
|
||||
image_request = {
|
||||
"model": body.get("model", self.valves.DEFAULT_MODEL),
|
||||
"prompt": prompt,
|
||||
"size": body.get("size", self.valves.DEFAULT_SIZE),
|
||||
"n": 1,
|
||||
"response_format": "b64_json"
|
||||
}
|
||||
|
||||
# Call LiteLLM images endpoint
|
||||
response = requests.post(
|
||||
f"{self.valves.LITELLM_API_BASE}/images/generations",
|
||||
json=image_request,
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {self.valves.LITELLM_API_KEY}"
|
||||
},
|
||||
timeout=self.valves.TIMEOUT
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
yield self._error_response(
|
||||
f"Image generation failed: {response.status_code} - {response.text}"
|
||||
)
|
||||
return
|
||||
|
||||
# Parse response
|
||||
result = response.json()
|
||||
|
||||
# Check if we got image data
|
||||
if "data" not in result or len(result["data"]) == 0:
|
||||
yield self._error_response("No image data in response")
|
||||
return
|
||||
|
||||
# Get base64 image data
|
||||
image_data = result["data"][0].get("b64_json")
|
||||
if not image_data:
|
||||
yield self._error_response("No base64 image data in response")
|
||||
return
|
||||
|
||||
# Return image as markdown
|
||||
image_markdown = f"\n\n**Prompt:** {prompt}"
|
||||
|
||||
# Yield final response
|
||||
yield json.dumps({
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": image_markdown
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}]
|
||||
})
|
||||
|
||||
except requests.Timeout:
|
||||
yield self._error_response(f"Request timed out after {self.valves.TIMEOUT}s")
|
||||
except requests.RequestException as e:
|
||||
yield self._error_response(f"Request failed: {str(e)}")
|
||||
except Exception as e:
|
||||
yield self._error_response(f"Unexpected error: {str(e)}")
|
||||
|
||||
def _error_response(self, error_message: str) -> str:
|
||||
"""Generate error response in OpenAI format"""
|
||||
return json.dumps({
|
||||
"choices": [{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": f"Error: {error_message}"
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}]
|
||||
})
|
||||
Reference in New Issue
Block a user